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Chapter 5
Wideband feedback synthesis

A reliable feedback analysis is a precondition for wideband feedback design. It
facilitates assessing transfer functions of feedback amplifier when their configuration is
known. On the other hand, feedback design also requires adequate synthesis. This is the
reverse problem, dealing with the question what circuit configurations are required to
realize transfer functions that meet predefined requirements.

State of the art / manual methods

Nordholt [406] has developed a manual synthesis method for negative feedback

amplifiers. This hierarchical design method was initially intended for feedback amplifier

design, however it is wider applicable. This synthesis is roughly characterized in the
following design steps:

1. Basic design, using simplified models for the individual circuit elements. In this
design stage, the principle limitations of the overall circuit performance are
analyzed, such as bandwidth and noise.

2. Analysis, using manual methods or circuit simulation. In this design stage, the
analysis of the circuit is complete, using models that take various parasitic effects
into account. The parasitic effects that are ignored in the first design step will
degrade the overall performance.

3. Active decoupling. Suppressing of parasitic effects, using additional sub-circuits. In
this design stage, the amplifier stages are supplemented with buffers, cascoding
configurations, etcetera, to minimize degradation by parasitic effects. The goal isto
approximate the results of the basic design. (stage 1).

4. Sometimes additional sub-sub-circuits are required, to supplement the sub-circuits
of the previous design steps.

Essentia for this strategy is that the designer is aware of the degradation from optimal

feasible performance, at each stage of the design. Furthermore, the performance of the

sub-circuits (and sub-sub-circuits) makes lower demands then the performance of the
basic design.

State of the art / automated methods

The above synthesis was initialy intended as an overall manua method, however,
circuit simulation! has expanded the applicability. Circuit simulators automate the
analysis, but not the synthesis. Attempts have been made to incorporate an automated
synthesis. Recent examples of synthesis programs are [501], IDAC [502], BLADES [503],

1 Examples of commercialy available simulators with powerful N-port facilities are
TOUCHSTONE/LIBRA, MDS and Super-Compact/Harmonica. Currently, many others simulators are
available with adequate microwave facilities. Further many variants of Berkeley SPICE are commercially
available. Touchstone and Libra are courtesy of EEsof inc., MDS of Hewlett Packard and Super-Compact and
Harmonica of Compact Softwareinc.

R.F.M. van den Brink Wideband feedback synthesis  (107)



5-2 53

OASY N [504] OPASY N [505], SEAS [506], OAC [507], ODIN [508], AMPDES [510] and
ARIADNE [512].

Due to the complexity of the synthesis problem, the above synthesis programs provide
restricted solutions. They may restrict [510] the technology (e.g. CMOS), restrict the
number of circuit configurations, use overly simplified models, or rely on adequate
reduction of parasitic effects. As a result, they are not applicable to wideband feedback
design.

The same applies for the manual use of the above mentioned synthesis theory. The first
two design steps are applicable to wideband feedback design. The third step, that must
cancel out parasitic effects with additional subcircuits, will eventually fail for increasing
bandwidth demands. As arule of the thumb, above 10% of f for second order loops and
above 2% of f; for third order loops, parasitic effects becomes crucial. The sub-circuits
will then add additional parasitic effects that may degrade the overall performance
instead of improving it.

Wideband feedback design is characterized by parasitic effects that are dominant. So
far, there is in general no answer to the question of dealing with parasitic effects that
modifies the dominant behavior of the feedback loop.

A novel approach
This chapter provides novel mathematical tools, to synthesize the stability compensation
of the loop. It relies on the generalized feedback analysis of the previous chapter 4. that
takes fully accounts for parasitic effects.
The proposed synthesis method is partly manual and partly automated. A (tabular)
circuit simulator, with augmented facilities, is required to extract the loop gain using the
theory of chapter 4. The required transfer functions of the compensation networks in the
loop are synthesized with a novel compensation algorithm, that is discussed in this
chapter 5. Additional (conventional) synthesis remains required to trandate the
synthesized compensation transfer into practical circuits.
The highlights of this chapter, which are developed in this study, are:
Development of a generalized theory on passive compensation networks, that is
suitable for automated compensation synthesis.
Development of an automated synthesis algorithm that predicts the required
compensation, in terms of poles and zeros. It has found solutions that are commonly
excluded from being feasible (see example in section 5.3.4).
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5.1. Aperture analysis of feedback amplifiers

When the loop I3|(s) = A(9)-b(9) is closed, the system gain is controlled by feedback. In
general, the loop requires special compensation measures to avoid a feedback system
that is unstable or that has resonant peaksin its transfer function.

Compensation syntheses requires an adeguate definition for the design goal, and an
adequate estimation of the design limitation. The ratio between desired system gain and
realized system gain is an intuitive measure to study the pass band limitations of the
system. Thistext refersto this pass band transfer function with the new term aperture.
Defining the design goal is equivalent with specifying the aperture. The desired
(generic) passhand is selected from a class of low-pass filters, selected by the designer.
This normalized transfer function is subsequently scaled to its actual value, using the
available bandwidth as scaling factor.

This section analyses the aperture in terms of available bandwidth and suitable
normalization of the bandpass transfer function.

At first, the concept aperture is defined. Some textbooks use the term closed loop gain
for what will be defined here as "virtual-aperture” while other textbooks use this term
for what is defined here as "realized system gain". To avoid further confusion, this study
has made up the new term aperture.

This study has developed a formal description for the design goal of optimal feedback
loops. This formal approach has forced to make a clear distinction between the
commonly used virtual-aperture and the here proposed effective-aperture.

Further, this study has resulted in reliable methods to calculate the available bandwidth.
These methods are robust and preserve their validation for feedback loops with parasitic
poles and zeros. Finadly, this study has resulted in a unified method to specify the
generic transfer that is realizable for the passband.

5.1.1. Definition of virtual-aperture and effective-aperture

In general, aloop without any stability compensation will oscillate or will have resonant
peaks. The aim of compensating networks is the improvement of the system gain. Since
the desired system gain is not necessary a constant, as in case of an integrator or an
equalizer, the direct use of system gain is not a convenient design goal. A genera
applicable design goal isthe ratio between what was intended and what is realized.

This text uses the name aperture for transfer functions that describe the ratio between
the system gain that is desired and the system gain that is reaized. In figurative
language: the aperture separates the desired gain from the realized gain by a low-pass
filter that limits the signal bandwidth when it passes this virtua 'opening’. The design
goal is an aperture value close to one, over the widest possible frequency band.

A formal analysis requires an unambiguous definition of desired system gain; a
definition that is invariant for any change in compensation. When (b, e, n) refer to the
parameters of the compensated feedback network and (b, &,, n) to the same parameters
of the uncompensated network, then the desired system gain is defined as follows.
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forward leakage: Agp=r

realized system gain: A, =—(en/b)-(Ab)/(Ab-1) +r
asymptotic system gain: Ay =—en/b) +r

virtual system gain: A, =—(en/b)

desired system gain: Ay = —{€;Ny/by)

Our definition of desired system gain is valid when the forward leakage (r) is small,
compared to the system gain. Furthermore, we assume that an unambiguous distinction
can be made between compensated and uncompensated state. This distinction is not
always evident and has led us to introduce in this text two aperture definitions.

We define effective-aperture that is of genera applicability, and virtual-aperture that is
of limited applicability. They are defined as follows:

Effecti _ RedlizedGain—Leakage @~ _F_ enby
ective-aperture = SesredGain “E_1 anb
. _ RealizedGain — Leakage _ A
Virtual-aperture = Virtua Gain = B 1
H(® =A©b(E

Compensation is used to realize a system gain that approximates the desired system
gain. The effective-aperture is a handy figure of merit for studying the compensation. An
adequate compensation forces the effective-aperture value to one within the frequency
band of interest, without resonating peaks and oscillations.

When all compensation is concentrated in the forward amplifier, the virtual-aperture is
equal to the effective-aperture. A distinction between those two apertures is then
irrelevant. In all other cases the virtual-aperture is a misleading measure for assessing
the compensation. Nevertheless, it is a commonly used measure, since the loop gain is
the only transfer function that is required for its evaluation.

In order to demonstrate the use of effective-aperture and virtual-aperture in practice, it is
convenient to model the compensation as though it is concentrated in two distinct
networks. Since the compensation is most effective in A(s) and b(s), this example
assumes that the compensation does not affect e(s) and n(s). The loop gain is then split-
up in the following basic el ements:

uncompensated forward gain AyS)
uncompensated feedback factor by(s)
profiled compensation H.(S) cascaded with Ay(S)
phantom compensation Hcp(S) cascaded with b(s)

The application of the words profiled and phantom is clarified in a succeeding section
5.1.2. In this section these names are merely used to distinguish the compensation
transfer in the forward amplifier (profiled) and the compensation transfer in the
feedback network (phantom).

Figure 5.1 shows two sets of equivalent flow diagrams that represent the system
feedback in the case (5.18) that the compensation in the loop is made explicitly visible
and in the case (5.1b) that the compensation is embedded. In the first example the
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desired system gain and the associated effective-aperture are in evidence. In the second
example the virtual gain and the virtual-aperture are used, since no information is
available on the phantom compensation.

This figure illustrates that the main signal path is split into two parts: a gain block with
ideal characteristics and a (low-pass) filter block that represents all bandpass limitations.
It demonstrates that the effective-aperture meets the requirements of the design goal, for
which the bandwidth must be maximized and the passband equalized. In this example,
the effective-aperture reduces to:

Effective-aperture = = o

(A) compensation is visible (B) compensation is embedded

T Forward Leakage T Forward Leakage
ds q. ds q.
R 1 Ab [y _ x.n Ab A
-b Ter Hep Ab-1[+ T -b Ab-1| + ©
Desired Gain Effective-Aperture Virtual Gain Virtual-Aperture
Prefered choice Second best choice

Fig 5.11 Distinction between effective-aperture and virtual-aperture. The
aperture is the transfer of a virtual low pass filter that limits the
bandwidth of the gained signal. The effective-aperture is a measure that
remains valid when the compensation is (partly) phantom (H_ ' 1). The
virtual-aperture is often used, however will be misleading for bandpass
analysis. In other situations, virtual-aperture and effective-aperture are
equal.
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5.1.2. Bandwidth analysis

The estimation of the available bandwidth of the effective-aperture has been a standard
design aspect from the very beginning of wideband amplifier design. It serves as an
initial design goa and may be used to distinguish efficient from inefficient
compensation methods. This has resulted in the well-known gain-bandwidth product
(GB-product) for first order feedback loops and, more recently [406], in the loop gain-
poles product (LP-product) for all-pole higher order feedback loops.

In its current form, the LP-product is not suitable to predict the available bandwidth for
loops with annoying parasitic poles and zeros. This is because the LP-product is
restricted to dominant singularities, that cannot be extracted when the available
bandwidth is unknown. As aresult, a complementary algorithm is required.

This study has resulted in a robust algorithm that predicts the available bandwidth,
irrespective of the presence of parasitic poles and zeros.

For reasons of completeness, the intuitively based design process commonly followed
are reviewed here. The aim of this subsection is, however, to develop a method for
formal analysis as required by automated synthesis.

Definitions

To begin, the concept available is introduced in the context of asymptotic
approximations of the effective-aperture. In a well-designed feedback amplifier, the
effective-aperture is close to one, over the widest possible frequency band.

The compensation affects this bandwidth in such a way that passive compensation
degrades the bandwidth while active compensation improves it. This is because active
compensation networks are amplifiers that provide additional loop gain, and an overall
increase in loop gain may result in increased bandwidth. Passive compensators, on the
other hand, are attenuators that reduce the loop gain and possibly the bandwidth.

This chapter is restricted to passive compensation. These compensation networks are
optimal when they preserve al available high-frequency gain. This facilitates the
realization of amplifiers with the widest bandwidth.

In a well-designed feedback amplifier, the effective-aperture is constant over a wide
frequency band, tending to zero at very high frequencies. Since stability problems are
mainly reserved for mid-band frequencies, the compensation must restrict itself to
midband frequencies, and must leave the effective-aperture unchanged for zero and
infinite frequencies. This facilitates a simplified calculation of the asymptotic effective-
aperture without further knowledge of the compensation.

Phantom- and profiled compensation influence the effective-aperture in a different way
because of their different location in the loop. Various loop gain aspects can therefore
be isolated to simplify the asymptotic evaluation for the effective-aperture:

profiled compensation: H.(9 9 =H(0)
phantom compensation: Heo(S) g, =He,(0)
uncompensated loop gain: Hoy(s) = Ay(9)-by(s) 9o =Ho(0)
profiled loop gain: H(S) = Ag(8)-bo(5)-He(9) 9. =H0)

total loop gain: (S = Ay(9)by(9)H(9He(9 g =H(0)
Figure 5.2 illustrates the difference between profiled loop gain and total loop gain for an
example of a compensated amplifier with three dominant poles. Two (phantom) zeros in
the feedback network are added to the loop, to provide the overall compensation. They
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modify the loop gain at high frequencies, which causes the difference between profiled
and total loop gain.

gain
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Fig 5.2 Difference between profiled loop gain and total loop gain for a
third order loop with two phantom zeros. The point of intersection of the
two asymptotic lines (H) and (L) is the bandwidth limit (I GHz) of the
effective-aperture.

The profiled loop gain predicts the asymptotic line (H), and is a good
measure for the available bandwidth. This does not hold for the total loop
gain.

Asymptotic approximations

In awell-designed compensated amplifier, the dominant order of the profiled part of the
loop gain is higher than the dominant order of the phantom compensation. This property
facilitates an asymptotic approximation of the effective-aperture for w® ¥. Neglecting
the high frequency transfer of the phantom compensation, with respect to the profiled
part of the loop gain, resultsin:

VHL() 1 1

O S TT00 T 9 O e - IR0
A ©®  —H (forwe )
| 11 {
b I, A9 ® (0 ~ 9, (forw®0)
. 1 T
faiml > g b

The above approximations uses the property that the profiled loop gain is significantly
higher than one for low frequencies and tends to zero for high frequencies. As a result,
the transfer of the effective-aperture tends to (]Jgp) in the pass band, and tends to —H(s)
for higher frequencies.

Figure 5.2 demonstrates the impact of this approximation. The close match between
effective-aperture and its asymptotic approximation facilitates a first estimation of the
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available bandwidth on the basis of asymptotic lines. Note that the high frequency
asymptotic line is not an approximation of the rotal loop gain but of a stripped variant,
the profiled loop gain.

The generalized bandwidth algorithm, in two steps

Secondly, a two-step procedure is described for determining the available bandwidth,
that uses the asymptotic properties of the effective-aperture. The first step is a rough
estimation, based on the asymptotic corner frequency of the profiled loop gain
magnitude. The second step is a refinement step that uses this estimation to deflate the
loop gain to its dominant form, using the reduction techniques of section 4.5. The
asymptotic corner frequency of the dominant form is then determined, this being a
generalization of the LP-product.

Manual synthesis can not use the improved accuracy of the second refinement step due
to the approximate nature of manual methods. When manua synthesis methods are
adequate, the two-step approach does not result in significantly improved results.

We have observed that the here proposed refinement step is crucial for automated
synthesis in those cases in which manua methods fail due to the complexity of the
feedback loop. This is because the available bandwidth estimation is an important input
parameter for the automated synthesis algorithm that is described in section 5.3. The
refinement step has enabled the algorithm to predict redlistic solutions where it would
otherwise have failed. The generalized definition of the dominant loop gain, see section
4.5.3, is essential to the success of this refinement step.

Step 1: Global asymptotic corner frequency. A rough estimation of the available
bandwidth is the global asymptotic corner frequency. This frequency w, is defined as the
intersection point w, between low frequency approximation |A,,(0)| » 1/|g,| and the high
frequency approximation JA_(jw)| » Hy(jw) of the effective-aperture. Its valueis close to
the frequency where the product of phantom dc-gain and profiled loop gain has the value
one: |gp-HS(jwb)| =1.

For manual analysisit is satisfactory to draw a Bode plot of the profiled loop gain and to
read off the intersection point with the unity gain line. Automated analysis may follow
the same procedure, using a standard iterative root finding method.

From the standpoint of software implementation, it is convenient to re-use the available
polynomial root finding algorithm for this purpose. The corner frequency w, is then
evaluated as below by the calculation of polynomial roots.

|gp-HS(jwb)| = |gp-TS(jwb)/NS(jWb)| =1 is a rational function
|9, HWp)PP = [g,P-Hy(+iw,) Ho(=w,) = 1
192 T o(+iWp) To(IW,) — N(+jw) Ny(—wy,) = 0

| {iwg » roots(jg, P T(+iwy) To(—wy) — N(+Hw) No(—wy)) |

In general, a set of real, purely imaginary and complex pairs will be found as solution
for {jw,}. The purely (positive) imaginary roots are of interest, and usualy there is a
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unique solution. In the exceptional case that there exist more than one intersection
between profiled loop gain and the unity gain line, the highest intersection is will be the
desired corner frequency.

Step 2: Dominant asymptotic corner frequency.

The dominant asymptotic corner frequency w, is an improved estimate of the available
bandwidth is . The definition of w, is similar to that of the global asymptotic corner
frequencies w, differing in the use of a dominant approximation of the profiled loop
gain. It requires the preceding calculation of the global value w, to supply the corner
frequency for the dominant deflation algorithm of section 4.5.3.

From the magnitude approximation of the effective-aperture we obtain:

Al > T T
19l + VIH (W)l 1+ Wwhng™m
0'1(1-5/z)
HJ(s) » gs-m (dominant approximation)
1 lod g

A_(0)] = = =
MOl = 9+ Tig) = To,0d+1 = Tol+ 1

AWl » HGWI  » lgd - Olpl/ Olz| - [Ljwi™™

h = =
W, =/(1+igg)) - OIpDI(Olz) h=(n-m)
{ pk} = all dominant profiled poles
{Zr} = all dominant profiled zeros
9 = 959, = total DC loop gain
n, m = number of dominant profiled loop gain poles and zeros

The total DC loop gain and the dominant poles and zeros of the profiled loop gain are
the only parameters that determine the dominant asymptotic corner frequency.

5.1.3. Bandpass analysis

The available bandwidth of the effective-aperture is in essence a frequency scaling
factor of al possible generic low-pass responses for the passband. The bandpass transfer
function comprises the whole effective-aperture and must be flattened and made free of
resonance.

Synthesis agorithms for compensation require a precise definition of the desired
bandpass transfer function, such as maximally-flat or equal ripple amplitude, or linear-
phase. This section describes some standard transfer functions, adopted and modified
from low-pass filter theory, that match the available bandwidth definition of section
5.1.2.
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Figure 5.3 shows some examples of standard low-pass all-pole transfer functions for
various transfer orders. These plots are normalized with respect to their asymptotic
corner frequency, which is defined as the point of intersection between the two
asymptotic Bode lines for low and high frequencies.

The asymptotic corner frequencies proposed here differ from the -3 dB corner frequency
that is commonly used in filter theory. This is to link better up with the available
bandwidth theory of section 5.1.2. The exact definitions of these modified curves and
the algorithms for the associated transfer coefficients are developed during this study,
and summarized in appendix 1.

Compensation synthesis starts from the calculation of the available bandwidth and from
the selection of an appropriate bandpass curve. The choice of the low-pass curve is an
important design parameter, and is application dependent. On account for what grounds
must these choices be based?
One of the most important criterion for digital signals is the minimization of overshoot
in the step response. For a set of modulated signals, such as TV channels, a magnitude
response with maximum bandwidth (-3 dB) might be relevant. With respect to the three
standard transfer functions, relevant properties for a given asymptotic corner frequency
are summarized below:
- When the low-pass transfer is close to a Bessel transfer function, the group delay
characteristic is maximally flat and the step response has no overshoot.
When the transfer is close to a Butterworth transfer function, the magnitude
response is maximally flat and has a wider bandwidth. Note for digital signals that
the lack of ripple in the amplitude response is not equivalent to a lack of overshoot
in the step response. As a result, the rise and fall times of the Butterworth step
response are shorter than for the Bessel response. This benefit is accompanied by
some overshoot in the step response (e.g. 10%).
The bandwidth of a Chebyshev transfer function, with egual asymptotic corner
frequency, is even wider. This is, however, at the cost of significantly higher
overshoot.
It is quite risky to restrict the passband analysis to frequency domain analysis alone.
Using afrequency domain circuit simulator as a design tool, can easily lead to amplifiers
with a seemingly excellent magnitude response, that nevertheless exhibits oscillatory
behavior. Although the required information is available in a Bode plot, the difference in
phase response between a parasitic pole slightly to the left or slightly to the right of the
imaginary axis is hardly noticeable. It is therefore necessary to observe the pole-zero
patterns of the aperture of the feedback loop, e.g. as a root-locus plot of the loop gain.
The pole-zero patterns in figure 5.3 of characteristic transfer functions are useful for
pattern recognition.
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5.1.4. Conclusions

In conclusion, we defined a transfer to enable a designer to define an adequate design
goa for feedback synthesis purposes. This so called aperture represents the ratio
between desired system gain and realized system gain, and has a low-pass transfer
function.

Two different apertures were defined: the effective-aperture that is of genera
applicability and the virtual-aperture that is of limited applicability. The use of the
effective-aperture is preferred, however it requires the transfer function of the phantom
compensator in the loop gain. When this is impossible, the designer must manage a
restricted synthesis with the virtual -aperture.

We developed a robust algorithm that estimates the available bandwidth from the
asymptotic behavior of the effective-aperture. Since a rough estimation may fail when
designing complex feedback loops, an additional refinement step was developed. When
future circuit simulators give full support to bandwidth prediction, then the interaction
between simulator and designer will be as follows:
- Thedesigner splits the circuit in aforward amplifier and a feedback network.
The simulator extracts the superposition parameters and all the poles and zeros of
the loop.
The designer indicates what feedback singularities are inserted for phantom
compensation.
The simulator provides the available bandwidth.
When the simulator gives full support to the synthesis of section 5.3, then it also
provides the required transfer functions for an (additional) phantom compensator and an
(additional) profiled compensator.

The available bandwidth is in essence a frequency scaling factor of all possible generic
low-pass responses for the passband of the effective-aperture. Various all-pole low-pass
responses are analyzed to enable the designer in defining unambiguous design goals for
synthesis purposes. Various selection criteria are discussed for three generic low-pass
responses. Chebyshev, Butterworth and Bessel. The concept of asymptotic corner
frequency is described for low-pass transfer functions to facilitate an adequate
normalization .
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5.2. Compensation techniques for feedback amplifiers

Compensation is aimed at modifying the loop gain so that the effective-aperture better
approximates a predefined transfer function. Practical compensation is confined to
physicaly realizable networks. A number of successful compensation techniques have
been described in the literature, by Ghausi and Pederson [404], Cherry and Hooper [405]
and Nordholt [406]. These techniques are analyzed primarily from an implementation
point of view.

Benefit of optimizers

Automated optimization techniques are very effective compensation tools when the
circuit configuration is chosen. The optimizer adjusts various element values
simultaneoudly in an iterative way, to fulfill a predefined design goal. The commercial
available simulators Touchstone? [124], Libraé [125], and MDS? [126] give full support
to this approach. They allow a hierarchy of circuit blocks and permit the use of variable
labels to define relations between tunable elements.

The aperture analysis of section 5.1 provides reliable predictions of the aperture
(available bandwidth and generic passhand) and is of valuable use to define that design
goal. The more redlistic this goal is, the more effective an optimizer will be.

The classic paper by Temes and Calahan in 1967 [411] was one of the earliest to
formally advocate the use of iterative optimization in circuit design. Bandler and Chen
[412] described in 1988 a detailed overview of various methods and summarized more
than 100 references to relevant papers. Most optimizers are implemented for tabular
circuit simulators. An implementation for an analytical circuit ssmulator is mentioned in
[509,510].

Restrictions of optimizers

Automated optimization techniques require circuit configurations and tuning elements as
input. When a solution exists, when adequate tuning elements with proper starting value
are chosen and when parasitic effects are adequately minimized by additional sub-
circuits (buffering, cascoding), then optimizers may be very effective.

On the other hand, they will never find a solution when the compensating elements are
inadequate. Compensation techniques that are effective below, e.g. f/10, may fail for
wideband feedback amplifiers.

An additional approach

Simulators should inform the designer whether it is principally impossible to
compensate for instabilities or not. If not, it is of great value to inform the designer what
transfer function is required for additional compensation. It might help to find an
additional compensation network that causes the required additional transfer.

In particular, an abstraction level is required that facilitates the separation of physical
from non-physical solutions. It must be isolated from the implementation. Practical
implementations of compensating networks are usually intertwined with the circuitry.
Without loss of generality, we will act as if these networks are fully separable from the
forward amplifier and the feedback factor. This may result in an unorthodox description
of compensation, however it iswider applicable.
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Section 5.2 begins with the de-embedding of the compensation networks from the
forward amplifier and from the feedback factor. It summarizes basic properties that
result from the restriction that the compensation be passive.

Particular attention is paid to the transfer properties, with no more than a weak link to
practical circuits. The major part of the implementation problem is l€eft to the reader and
to the referred publications.

5.2.1. Profiled compensation techniques in the forward amplifier

The application of compensation to forward amplifiers (A) and feedback factors (b), is
far more effective than modification of the input and output conversion factors (e and n).
The two forms are identified? as profiled and phantom compensation respectively (see
figure 5.1 and the associated subsection).

The name profiled refers to the property that all profiled compensation zeros come
through in the effective-aperture at the same location. This property does not hold for
the phantom compensation zeros.

The transfer function of a physical network has at least as many poles as zeros, however
in feedback |oops the number of poles is aways higher. It means that the loop gain goes
to zero for infinity frequencies, since al physical devices (media) will eventually block
all signal flow when frequency increases, if necessary up to lightwave frequencies.

The phase shift, associated with these poles, causes the loop to resonate at distinct
frequencies or to oscillate. This is particularly true for the frequency band in which the
loop gain approaches the value one. The more poles in the passband the more trouble
they cause.

The phase shift, associated with a single pole, is insufficient to cause the loop to
resonate. Compensation is therefore required for higher order loops. The same applies
for lowband pole-zero pairs, because they add no phase-shift to the gain at highband
frequencies. The location of midband and highband poles and zeros s critical.

Profiled compensation is basically the addition of zeros in the loop to cancel out the
annoying poles in the passband. Because the addition of compensating zeros comes in
pairs with new poles, the uncompensated pole is replaced in practice by a new pole
positioned at a more favorable location. This is only effective when the new pole
position is associated with an optimal trade-off between minimal phase shift and optimal
preservation of loop gain. As a result, the essence of profiled compensation is to cover
(midband) poles with compensation zeros, and then to add (highband) poles that are
precisely positioned at a more favorable location.

The exact requirements for the location of these poles and zeros are discussed in section
5.3; this subsection restricts itself to the overall compensation principle.

2 The word profiled has been introduced in this text. The word phantom is commonly used.
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Generic magnitude response
Based on the assumption that in the bandwidth analysis all amplification effort is put in
the design of the forward amplifier, the profiled compensation will most likely be
passive. An optimal passive profiled compensator H_(jw) must conform to the following
requirements:
- It preserves al gain a the high-end of the passband to preserve the available
bandwidth. This meansthat H_(jw) ® 1 in the high frequency band.
It preserves al gain at the low-end of the passband because modification of a
frequency band with high gain has nothing to add to the overall stability. This
means that H_(0) ® 1in the low frequency band
As aresult, an optimal profiled compensator is an attenuator of mid-band frequencies
only. A near-optimal profiled compensator causes additional attenuation at |ow-band
frequencies. Thisisillustrated in figure 5.4.

first order profiled compensator (pole shifting) second order profiled compensator (pole splitting)

341

(9) (9)

0.1

(2) (2) (2

Fig 5.4 Typical example of the magnitude response of a passive profiled
compensator that is cascaded with the forward amplifier. Midband
frequencies are attenuated to realize the compensating zeros. All high-
band frequencies are passed to preserve the available bandwidth.
Attenuation of low-band frequencies deteriorates the feedback accuracy,
moderately affecting the passband of the effective-aperture.

First order profiled compensators, although providing effective compensation, are
unable to preserve the gain for low-band frequencies. At minimum, a second order
transfer function, or higher, is required to preserve the gain at both ends of the passband.
The higher the transfer order, the better the compensation may be.

Another aspect illustrated in figure 5.4 is that it is a bad policy to position the poles,
associated with the compensation, at a corner frequency that is significantly higher than
the bandwidth limit. This causes a reduction of loop gain at high-band frequencies and
with that a reduction of available bandwidth.

Generic pole-zero pattern

The magnitude response in figure 5.4 of a second order profiled compensator is typical
for optimal higher order profiled compensators. all-pass functions with a dip at mid-
band frequencies. This implies that the number of compensating zeros is the same as the
number of poles belonging to them.

Further, the gain is approximately one, for frequencies exceeding the bandwidth limit.
Thisimpliesthat the product of all poles equals the product of all zeros.
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The position of the poles and zeros s critical. It happens that the zeros coincide with the
poles in the specia case that all singularities in the loop are compensated. This means
that the transfer order of the compensating network equals the transfer order of the
uncompensated loop. As a result, the overall system order will not increase when
employing full compensation. In the more general case where the compensation is
restricted to the dominant singularities, the zeros will not necessarily coincide with the
poles.

5.2.2. Profiled compensation techniques with intertwined solutions

From a mathematical point of view, the profiled compensation is virtually concentrated
in a single equalizing network, as though it is cascaded with the forward amplifier. In a
practical implementation, the profiled compensation is distributed and embedded in the
amplifier stages. The transfer of an uncompensated amplifier stage and its compensation
are then intertwined by proper modification of the original transfer function.

There are no fundamental reasons to avoid equalizers as profiled compensators, however
from a practical point of view intertwined solutions are more attractive due to their
simplicity. Figure 5.5 and 5.6 show examples of intertwined solutions, that are
commonly used.

This study has led to increased insight into the principal restriction of intertwined
solutions. They modify the uncompensated transfer function, which implies that the
uncompensated poles are moved from their original position. This is equivalent to a
profiled compensator that matches some compensating zeros with uncompensated poles.
As aresult, intertwined solutions have fewer degrees of freedom than distinct solutions.
An intertwined solution may be sub-optimal, when the presence of parasitic singularities
restricts the compensation to a dominant form.

Intertwined compensation by pole shifting

Figure 5.5 shows an example of an intertwined first order profiled compensator. An
additional resistor competes with the, mainly capacitive, input impedance of a transistor
and absorbs the current gain at low-band frequencies. The asymptotic Bode plots
illustrate that this intervention replaces the uncompensated transfer with a mid-band pole
by a compensated transfer with a pole at a higher corner frequency. This is called pole
shifting.

The compensation transfer function is a virtual transfer function that originates from the
ratio between compensated and uncompensated current gain. Note that the pole-zero
pair of compensation zero and uncompensated pole is available in this virtual transfer
function but is absent in the actual current gain.

Practical implementations will always suffer from some degradation of high frequency
gain. In this example the addition of a well-adjusted inductor, in series with the
absorbing resistor, will relax its absorption at high-band frequencies. Such an inductor
will improve the loop gain at higher frequencies.
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unmodified current gain pole shifting

dissipative
degradation

SR

Fig 5.5 Example of an amplifier stage with intertwined first order
profiled compensation. The two asymptotic Bode plots of the current gain
illustrate symbolically that the compensated transfer originates from a
virtual cascade of the uncompensated transfer and the desired
compensation function.

Intertwined compensation by pole splitting

Figure 5.6 shows an example of an intertwined second order profiled compensator. The
additional resistor of figure 5.5 is replaced by a series RC-network for maintaining the
current gain at low frequencies. The asymptotic Bode plots illustrate that this
intervention replaces the uncompensated transfer with a mid-band pole by a
compensated transfer with two poles and a zero. The poles are positioned at either sides
of the pass-band and the zero somewhere between these two. This is caled pole
splitting.

The preservation of low frequency gain is one of the benefits of pole splitting, compared
to pole shifting. Another benefit is that the position of the generated zero is a free
choice. This reduces the number of compensation zeros that is deemed to take the place
of apole, which is atypical restriction of intertwined solutions. The location of no more
than one compensation zero is committed to the position of an uncompensated pole.

The second example in figure 5.6 performs an eguivalent transfer function with local
feedback. The benefit of this approach is that the preservation of the high frequency
current gain may be achieved without inductor. A small capacitor, shunted with resistor
R,, relaxes the local feedback for high frequencies, and in this way relaxes the reduction
of high frequency gain. The use of a parasitic transistor capacitance, and a properly
matched local feedback network may fulfill all requirements.

The launch of similar local feedback loops with both inductors and capacitors facilitates
the construction of higher order compensators with complex poles and zeros.
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unmodified current gain pole splitting

dissipative
degradation

Fig 5.6 Example of amplifier stages with intertwined second order
profiled compensation. The two asymptotic Bode plots of the current gain
illustrate symbolically that the compensated transfer originates from a
virtual cascade of the uncompensated transfer and the desired
compensation function.

5.2.3. Phantom compensation techniques in the feedback network

The feedback factor is another parameter in the superposition model that is accessible
for effective compensation. This type of compensation is identified as phantom
compensation.

The name phantom refers to the property that the insertion of hew phantom zeros do not
affect the position of the zeros in the effective-aperture and do not expand the number of
zeros. This remarkable feature facilitates a way to manipulate effective-aperture with the
addition of phantom zeros to the loop but without the addition of new singularities to the
effective-aperture.

To make this statement stick, the effective-aperture is written out in polynomial form:

To® T® Tl9

H(S) = HO(S)'HCS(S)'Hcp(S) = NO(S) . NCS(S) . Ncp(S) = loop gain
H_(s) = 1 %ﬁ O _ TO'Tcs'Ncp = ofecti )
= “Go .+ = = effective-aperture
= HCP -1g TO'T(B'Tcp - NO'Ncs'Ncp ”

Phantom zeros, which are the roots of the polynomial Tcp(s), contribute to the
denominator of the effective-aperture however are conspicuous by absence in the
numerator. Note that this does not hold for the poles of a phantom compensator.
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Phantom compensation is basically the addition of zeros in the loop to affect the
undesired poles in the passband. The exact location of these zeros is discussed in section
5.3, however in general they are located at the high end of the passband. This subsection
restricts itself to the overall principle.

Unlike profiled zeros, the addition of (passive) phantom zeros is not necessarily
accompanied with attenuation of the loop gain. This is because the feedback network is
commonly an attenuator itself, and the addition of zeros is nothing more than relaxing
this attenuation.

Figure 5.7 shows the impact of this statement. The first example shows a feedback factor
of b=1/25, cascaded with a first order (passive) phantom compensator. The second
example shows an equal feedback factor, but cascaded with two (complex) phantom
zeros. The phantom zeros causes the magnitude response to increase with frequency
until all feedback is maximized. As a result, the phantom zeros come in pairs with
parasitic poles, and these poles do not improve the overall transfer. The more phantom
zeros are inserted, the sooner this limit is reached and the lower the corner frequencies
will be of the parasitic poles.

The most conspicuous aspects of phantom compensation are the lack of any loop gain
reduction and the ability to keep all parasitic poles out of the passband. Because of these
features, phantom compensation is preferred to profiled compensation.

first order phantom compensator second order phantom compensator

® @p)

0.1 =

3] (22)

Fig 5.7 Typical example of the magnitude response of a feedback
network with (phantom) compensation. Lowband and midband
frequencies are not affected, preserving the intended feedback factor.
Since the feedback network is basically an attenuator, the compensator
reduces the attenuation for highband frequencies to create the
compensation zeros. Note the parasitic pole(s) that occur when all
attenuation is neutralized.

Figure 5.8 shows various examples with phantom compensation in optica receivers.
They are all terminated with a capacitive load, because a first order approximation of a
practical load is more often capacitive than inductive.

The shunt capacitor, added to the transimpedance receiver in figure 5.8a, increases the
RF-signal flow from output to input. This increases the feedback factor and yields a
phantom zero.

The series resistor, added to example 5.8b, inhibits the RF-signal flow from the output
of the amplifier to the load impedance, which is another way to increase the feedback.
The combination of both the serial and the shunt resistor generates two phantom zeros.
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In very wideband receivers, the parasitic shunt capacitor across the transimpedance
feedback resistor causes a feedback factor with an annoying corner frequency inside the
passband. The feedback network in figure 5.8c equalizes the feedback factor by a
counter-productive RC-network. The serial resistor, that is added to this example,
obstructs this equalization, and facilitates a phantom zero.

The last example in figure 5.8d is an optical receiver with current-current feedback, in
which the current flow through the two floating output terminals is fed to the input by a
capacitive current divider. This current division is frequency independent. The seria
resistor in the grounded portion of this divider causes an unbalanced current division for
high-band frequencies and yields a phantom zero. An additional inductor causes two
complex phantom zeros.

- — + - +
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Transimpedance feedback....... . . with a single phantom zero

1
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+I: - +I: -
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Transimpedance feedback....... .. with two (real) phantom zeros
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- + - +
s > s[>0
Band;/idth compensated tran'simpedance ............. wit'h a single phantom zer;
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LB e e

.

Current-current feedback........ with a single phantom zero

Fig 5.8 Examples of phantom compensation in various types of optical
receivers. All uncompensated examples are drawn on the left side and the
associated compensated examples on the right.

All examples of figure 5.8 suffer from parasitic poles in the transfer of the phantom
compensation. The capacitive load and the parasitic feedback capacitors prevent the
phantom compensator from being optimal, and introduce an additional penalty. This
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penalty is configuration dependent and limits the launch of phantom compensation in a
particular situation.

5.2.4. Conclusions

In conclusion, some restrictions of optimizing circuit ssimulators are discussed, when
used for compensating feedback amplifiers. A formal compensation synthesis is
proposed, that is isolated from how the compensation should be implemented. It enables
future circuit simulators to inform designers what compensation transfer is required for
proper compensation.

The properties of passive compensation networks in the forward amplifier (profiled
compensators) are analyzed. The transfer of optimal (passive) profiled compensators is
characterized by a 'dip’ a midband frequencies and unity gain a low and high
frequencies. The exact transfer is discussed in section 5.3.

Profiled compensators are usually intertwined with the remaining circuitry. These
solutions, however, have fewer degrees of freedom than distinct solutions. Some
intertwined solutions are summarized using well-known pole-shifting and pole-splitting
techniques.

The properties of passive compensation networks in the feedback network (phantom
compensators) are analyzed. The transfer of an optimal (passive) phantom compensator
is characterized by unity gain at low and midband frequencies, and high gain at high
frequencies. As a result, adequate passive solutions are always intertwined with the
feedback circuitry.
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5.3. Compensation synthesis for feedback amplifiers

The previous section analyzed the transfer of optimal profiled and phantom
compensators. This section 5.3 reverses this process, and synthesizes the compensation
transfer required to achieve a effective-aperture with an optimal transfer.

The synthesis of the compensation, starting from a specified effective-aperture and
available loop gain, is a complicated process. Innumerable solutions do exist but they
are very difficult to find on atrial and error base.

Nordholt [406] proposed a structured method to design the compensation for the special
case that the loop gain is an all-pole transfer function with two or three poles. Stoffels
[510] automated this design method, to generate a circuit diagram and its compensation,
guided by user specifications. Essential for the above methods is that the annoying
effects of parasitic poles and zeros is adequately reduced by additional sub-circuits
(buffering, cascoding).

At low frequencies, e.g. below /10 for second order loops, this approach is successful.
A fully automated synthesis of amplifiers has been demonstrated [510] for frequencies up
to 1 MHz (second order loop). However, these methods may fail for increasing
bandwidth demands, e.g. above 200 MHz.

Section 5.2 discussed the use of circuit optimizers, to extend the applicability of these
structured methods. However, a serious problem arises when optimizers are as well
ineffective in achieving the desired frequency response.

These wideband feedback amplifiers have in common that they suffer from loops with
dominant zeros, from RHP-zeros and from many parasitic poles and zeros that cannot be
ignored. The order of the loop transfer function is then too high for compensation of all
relevant singularities.

No solutions were found in the literature on controlling these loops.

This section 5.3 introduces a powerful algorithm for compensation synthesis that has
been developed during this study. It provides the transfer function that is required for
additional compensation.

The proposed method can handle loops with dominant RHP-zeros and loops that suffer
from parasitic singularities. This algorithm predicts the required compensation, in terms
of poles and zeros, where conventional (manual) methods fail.

Finally, examples are presented in this section that illustrate the power of the synthesis
algorithm, and may serve as atemplate for manual synthesis.

5.3.1. Bandpass synthesis

Consider a feedback amplifier topology, without stability compensation, for instance
designed using Nordholt's method [406]. A first requisite for automated compensation
synthesis is a mathematical description of the desired effective-aperture passband. This
mathematical description requires the specification of the generic passband and the
evaluation of the specific passband. Note that an unambiguous passband specification is
not equivalent to a unique compensation solution.
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generic passband specification

Compensation synthesis starts from the specification of a generic passband. The generic
passband, is a normalized transfer function that serves as a scale model for the effective-
aperture. Its dc-gain and its asymptotic corner frequency are one by definition. Further,
the generic passband is defined to be a minimum-phase transfer function, which means
that all singularities are positioned in the left complex half-plane.

A practical effective-aperture is a low-pass transfer function that must be smoothed and
optimally flattened. Non-coincident pole-zero pairs are undesirable in the generic
passband because they introduce additional ripple. The generic passband is therefore
primarily an all-pole transfer function, whose order is chosen as low as possible.

Select a suitable all-pole transfer function, for instance a Bessel, a Butterworth or a
Chebyshev transfer function, based on the bandpass analysis presented in section 5.1.3.
The pole-zero patternsin figures 5.9a and 5.3 are typical for these transfer functions.

specific passband evaluation
The specific passband serves as a properly dimensioned model for the effective-
aperture. The specific passband is evolved from the generic passband through
appropriate magnitude, bandwidth and delay. The scaling operations facilitate matching
the effective-aperture to the design goal, with respect to the compensation limits of the
loop.
The specification must take account of the limitations of passive compensation, so that
the specified bandwidth should match the available loop bandwidth. We identify this as
magnitude and bandwidth scaling. One way to modify the feedback loop to match this
passband specification is removing the undesirable poles by introducing coincident
compensation zeros.
Although the opposite applies for LHP-zeros, RHP-zeros cannot be compensated using
RHP-poles due to stahility considerations. This study has resulted in novel techniques on
handling RHP-zeros by treating them as pseudo delay. Building on this concept, a
method has been developed in this study that adds an appropriate delay to the passband
specification to satisfy the compensation limitations of the loop. We identify this as
delay scaling.
Let us recall what modifications to the specific passband are possible that preserve the
magnitude and bandwidth scaling. A typical passband specification is illustrated in
figure 5.9.
- Figure 5.9a is indicative for the initial pole-zero pattern of the generic passband,
resulting from appropriate scaling in magnitude and bandwidth.
The addition of coincident pole-zero pairs, as in figure 5.9b, will not affect the
transfer properties. Therefore, they are alowed in a passband specification when
required.
Addition of mirrored pole-zero pairs, such as in figure 5.9c, contributes a
frequency-dependent phase shift. Thisis equivalent to pseudo delay within alimited
frequency band. These pole-zero pairs are allowed in a passband specification when
unavoidable and when their magnitude is equal or higher then the width of the
passband.
All other pole-zero patterns are in principle undesirable.
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Fig 5.9 Example of the basic pole-zero patterns that composes the
specific passband of the effective-aperture. It comprises of: (a) a low-pass
all-pole transfer function, (b) an all-pass transfer function with coincident
pole-zero pairs and (c) an all-pass phase-shifting transfer function with
mirrored pole-zero pairs.

What pole-zero pattern is most appropriate for meeting the passhand specification?
From the definition of the effective-aperture it is observed that the zeros in the profiled
loop gain show up at the same location as in the effective-aperture. Since the specific
passband is preferably an all-pole transfer function, these zeros call for cancellation by
coincident poles. They should not pop up in the passband specification, or at most in the
shape of a coincident pole-zero pair, as drawn in figure 5.9b.

Unfortunately, this is not feasible for RHP-zeros. We assume that the best approach for
dealing with RHP-zeros is to let them function as pseudo time delay. They should
therefore appear in the passband specification in combination with poles that are
mirrored with respect to the imaginary axis, asillustrated in figure 5.9c.

In short, all zeros in a compensated effective-aperture must appear in the passband
specification, in combination with poles at their equivalent minimum phase position.
These poles are defined as poles that create coinciding pairs with LHP-zeros and create
mirrored pairs with RHP-zeros. The mirrored pole-zero pairs contribute a constant phase
delay to the effective-aperture over a wide frequency interval. The coinciding poles and
zeros neutralize each other.

From the definition of the effective-aperture it is recognized that the poles in the loop
gain show up at a different location as in the effective-aperture. They represent the
remaining restrictions on the feedback loop, and there is nothing left than to accept these
poles in the specification. The best that can be achieved is to position them as in the
generic passhand, properly scaled in bandwidth.

All scaling steps together result in the following transformation of generic passband into

specific passhand:

- Magnitude scaling contributes an exact match with the effective-aperture at zero
frequency. This scaling factor can be evaluated simply. It equals (g)/(g-1), in which
g isthe dc-gain of the loop.
Bandwidth scaling contributes a close magnitude match to the effective-aperture for
al frequencies within the passband. It requires the calculation of the available
bandwidth (w,), starting from a dominant magnitude match for infinite frequencies.
This calculation has been described in section 5.1.2.
Delay scaling is the finishing touch and contributes a full match of both magnitude
and phase. It fits the minimum-phase transfer of the generic passband, and the non-
minimum-phase transfer of a effective-aperture with RHP-zeros. When T(s)
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represents the polynomial with all profiled zeros of the loop gain and 7i(s)
represents the associated polynomial with all roots at their equivalent minimum
phase position, than the transfer function T (s)/7(s) provides the (pseudo) delay
requested.
The final specification of the specific passband A(s) results in the following
mathematical form:

g To(S) 1
o1 " To(S) By(swy)

A(s = = specific passband

In this expression, the polynomial B(s) refers to the numerator of the chosen generic
passband. The quantity g refers to the dc-loop-gain and performs the magnitude scaling.
The quantity w, refers to the available bandwidth and performs the bandwidth scaling.
The polynomial T(s) refers to the denominator of the profiled loop gain, and its roots
produce the zeros of the effective-aperture. The polynomial 7(s) refers to the minimum
phase equivalent of T(s), and its roots produce the poles in the effective-aperture that
accompanies the zeros. The rational function T(s)/T(s) forms an all-pass transfer
function with a pseudo delay component.

5.3.2. Compensation algorithm

A unique solution for the compensation of a feedback loop does not exist. Neverthel ess,
an agorithm should lead to a unique result. In this section, the prior conditions are
established that will yield the desired unique solution, which may be linked to practical
compensation considerations.

Next, a powerful compensation algorithm is introduced, in two steps. The full
compensation algorithm holds for the special case that all poles and zerosin the loop are
compensatable. The dominant compensation algorithm generalizes the synthesis for
loops with parasitic poles and zeros.

prior conditions for a unique compensation solution

Consider the synthesis of a particular loop gain requirement, starting with an nth-order
specific passhand transfer function. The synthesis procedure should find an expression
for the loop gain matching with (n+1) constants, for instance organized as the poles and
the dc-gain of the predefined specific passband.

Reliable loop gain synthesis starts from the assumption that the desired specific
passband is compatible with the dc-gain and the available bandwidth of the loop. The
reduced synthesis should match with the (n-1) remaining constants, for instance
organized as the parameters of the generic passband transfer function. In practical terms:
the compensation of an nh-order loop requires at least (n—1) compensation interventions.
The loop gain has at least n poles in the loop, and that is one more than is required for a
unique solution. The degrees of freedom increase in number when (phantom) zeros are
permitted in the solution for a compensated loop gain. On one hand, it is not difficult to
find just some solution, however a practical implementation of this solution will not
fulfill the requirements of practical feedback loops. On the other hand, it is very difficult
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to find the remaining unique solution using manual synthesis, imposed by prior
conditions.

The synthesis algorithm proposed here exactly solves (n—1) loop parameters in the case
that all phantom zeros (m) in the feedback network and some poles (n-m-1) in the
profiled loop gain are variable. This number is the exact number that is required to yield
a unique compensation solution.

All remaining loop parameters are arbitrarily predefined, which is equivalent to fixing
all zeros and all remaining poles in the uncompensated loop gain. These prior conditions
link up nicely with practical compensation problems because most singularities in the
loop maintain their position after a successful sequence of compensation interventions.

full compensation

Initially, the question which loop gain I3|(s) yields a effective-aperture with predefined
generic passhand is considered in the case that dc-gain of the loop and some poles and
zeros are predefined? To find this solution, the compensated and uncompensated |oop
gain are described in the following rational form:

To(s) To(9)

Hy(s =g .—NOO(S).NOX(S) =g No(S) = uncompensated loop gain

o To(9) TS T(s)

H = . = "o = 7
(9 g Neo(9N(9) g R compensated loop gain

The polynomials N(s) and T(s) represent the uncompensated poles and zeros and the
constant g represents the dc-gain of the loop. All zeros (T,) and some poles (N,,) are
predefined, which means that the compensation may not modify the position of these
singularities. The remaining poles (N,) are selected for modification by the
compensation procedure.

The polynomials ﬁl(s) and 'T'(s) represent the compensated poles and zeros, of which
Nyo(S) and T(s) are the predefined singularities, and N,(s) and T,(s) are the unknown
singularities that will be extracted by the synthesis process. 4/ roots of N,(s) are
originated in the forward amplifier (profiled poles) and ail roots of T (s) are
compensation zeros in the feedback network (phantom zeros). All polynomias are
normalized in magnitude to ensure that N,(0)=T,(0)=1 and N,(0)=T,(0)=1.

Appendix J describes the mathematics of the algorithm proposed for the extraction of
the polynomias N,(s) and T,(s). It is based on the weighted polynomial division of
appendix G, that is an integral part of this study. A symbolic representation for this
process, annotated as a function of four input variables and two output variables, yields:

| INGS), T (9] = CompSynthesis (9, Ng(S), To(S), Bo(siwy)) |

It requires the generic passband polynomial B(s), scaled in bandwidth by the available
bandwidth w; of the uncompensated loop gain. The order (m) of Ny(s) is the number of
profiled poles (m) that must maintain their positions, and this presets the required
number of phantom zeros (m) that will be produced by the output polynomial T,(s). The
order (n) of B(s) fixes the number of profiled poles (n-1-m) that must be modified and
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that will be produced by the output polynomia N,(s). The other two input parameters
specify the predefined poles and zeros and the loop gain.

The two extracted polynomials, N,(s) and T,(s), produce the transfer functions of the
compensating networks. From the definition of compensated and uncompensated loop
gain, we obtain:

T .
Hcp(S) = 77 = phantom compensator, with order (m)
_NoS .
H. (9 = NG = profiled compensator, with order (n-m-1)

The zeros in the profiled compensator cancels al the selected poles (N,) of the loop.
This is because N, (s) originates from the uncompensated loop. In practice, this is
equivalent to the replacement of some poles in the loop, by some new, precisely
positioned, compensation polesin N,(s).

Furthermore, the algorithm ensures that some of the remaining poles in the profiled
compensator are used to cover al LHP-zeros of the uncompensated loop. This
minimizes the effective order of the compensated |oop gain.

An inaccurate evaluation of the available bandwidth causes a difference between the
highest coefficients of the polynomials N, (s) and N,(s). Thisis because N, (s) is not an
input parameter for the algorithm. As a result, the better that w; is estimated, the better
that H_(s) approximates one for infinite frequencies.

dominant compensation

Up to now, it has been understood that all the loop singularities are compensatable. This
implies that all singularities are within or close to the bandwidth circle, and that the
compensation solution will be exact. Restrictions to the zeros of the intertwined
compensation solutions are no longer of further concern with full compensation, since
all profiled zeros coincide with uncompensated poles in the loop.

Full compensation is feasible when parasitic singularities are irrelevant, which is typical
of low frequency design. In the case of significant parasitic singularities, a dominant
approximation of the loop is required to keep control over the transfer order of the
compensation solution. This requires the replacement of all singularities by a smaller set
with (other) singularities that approximate the loop within a predefined frequency band.
Thereafter, apply the overall compensation synthesis to the dominant singularities and
proceed as described above.

The necessity to correct the phase of the loop gain is concentrated near the maximum
available bandwidth w,. This implies that the accuracy of the approximation must be
optimized near w,. Start therefore from the estimation of the available bandwidth w, and
perform the dominant approximation from dc to w,. Especially the refinement step of the
accuracy near w,, as described in section 4.5.3, is important because accuracy failures
will significantly deteriorate the overall synthesis resullt.

The introduction of phantom zeros by the synthesis algorithm results in additional
parasitic poles in the loop. Their location is application dependent and is discussed in
section 5.2.3. Since they were ignored in the synthesis, an iterative approach based on
our synthesis procedure is required:
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Initialize the compensation synthesis based on an uncompensated loop.

Estimate the additional parasitic poles associated with phantom compensation.

Add these poles to the uncompensated loop and recal cul ate the compensation.
Repeat these iterative steps as often as is required to stabilize the predicted results.

A prectical implementation of the compensation prefers the use of intertwined
compensation networks. Unfortunately, the compensation zeros required do not coincide
with the (primary) poles in the loop, when applying dominant compensation. Instead,
they coincide with those dominant poles that differ in position from the primary poles.
As aresult, the use of intertwined compensation schemes may restrict or in fact undo the
compensation performance. This is because the intertwined compensation solutions are
directly associated with compensation zeros coinciding with primary poles.

A practical solution to this problem is a complementary mathematical adjustment of the
predicted compensation transfer function. This adjustment step must modify all
compensation singularities to force one or more profiled compensation zeros to a
predefined position and to conserve a fair approximation of the required transfer
function.

This isillustrated in the following example of a third order profiled compensator. The
right side of the eguation is the original result that is predicted by a dominant
compensation synthesis and the left side is the modified result

(1-s/z,0)-(1-97)(1-57y)  (1-9z,)-(1-52,)(1-5/2,)
(1-s/p')-(1-gp,)(1-sp’y) ~ (1-s/p,)(1-s/p,)(1-s/p)

In this example, all singularities are modified to change the zero z, into z,;, and to
facilitate a fair agreement between the left hand expression and the right hand
expression. This process is equivalent to:

(1-§/7,)(1-5/7) (1-5z,) (1-8/2,)-(1-5/z,)
(1-8p)-(1-8p)(1-9py) ~ (1-sz,) (1-9p)-(1-5/p,)(1-s/p,)

Of course there exist no exact solution and this clarifies the statement that an intertwined
compensation may restrict the overall compensation performance. To find a fair
approximation, an appropriate deflation technique can be used, such as the pole-zero
cancellation algorithm of section 4.5.2. In an emergency, the curve fit algorithm for
rational functions can give a solution.

Note that pole splitting techniques are preferred to pole shifting techniques, because
they entail more degrees of freedom. Pole splitting techniques make (at least) one
additional zero available for compensation, which is not restricted to the location of
another (primary) pole in the loop.

5.3.3. Examples of loops with full compensation

Practical feedback design cannot rely on the blind use of automated synthesis tools.
Compensation synthesis always requires some manual assistance, and root-locus plots
are quite suitable for the assessment of the synthesized result. These plots give
information on the loop gain, the effective-aperture, and the manner in which these two
areinterrelated.
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A root-locus plot is a composite description of an infinite number of pole-zero patterns,
with a minor difference between them. It is commonly practice to vary the dc-gain
parameter from zero to infinity athough there is no good criterion for selecting this
parameter for the best available choice. These plots are useful because they are
amenable to pattern recognition techniques. The effectiveness of this manual technique
is highly dependent on the correlation of interpretative graphic rules for associative root-
locus behavior with distinct changesin the loop.

This subsection summarizes various typical examples of root-locus plots to acquaint the
reader with a number of commonly known graphic rules based on pattern recognition.
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Fig 5.11 Examples of finite root-locus plots for compensated second
order feedback loops with all dominant poles. In these examples, the
poles near the origin are at 10 MHz and the feedback bandwidth is
1 GHz.

Figure 5.10 to 5.12 show various finite root-locus plots for a different number of
phantom zeros and for various generic passhand specifications. Finite root-locus plots
are dightly different from the usual infinite root-locus plot. Finite root-locus plots
illustrate the positions of all poles and zeros of the virtual-aperture, while the dc-gain is
varied continuously from its current value down to zero.

The points of the curved lines originate from the poles of the following transfer function,
while a varies from zero to one:

2afo

&TT with  {al ® 6 0<afl}
fi1g

A9 =
All infinite numbers of poles are marked with dots, which yields the curved lines. The
'beginning' of the lines are marked with cross markers that represent the poles of the
loop gain in a usual way. The 'end' of the lines mark the positions of the poles of the

R.F.M. van den Brink Wideband feedback synthesis  (135)



5-30 Compensation synthesis for feedback amplifiers 5.3

virtual-aperture, which is equivalent to the positions of the poles of the effective-
aperture. The phantom zeros are represented by square markers, while all remaining
zeros (if any) are represented with circular markers.
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Fig 5.11 Examples of finite root-locus plots for compensated third order
feedback loops with all dominant poles. In these examples, the poles near
the origin are at 10 MHz and the feedback bandwidth is 1 GHz.
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Fig 5.12 Examples of finite root-locus plots for compensated fourth
order feedback loops with all dominant poles. In these examples, the
poles near the origin are at 10 MHz and the feedback bandwidth is
1 GHz.

The pole-zero patterns in figure 5.10 to 5.12 are typical of compensated loops, in which
all amplifier stages provide a dominant pole of which the corner frequency is significant
smaller than the available bandwidth. These are al idealized situations; an example from
practice would never look that perfect.
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When plotted linearly, the uncompensated pole positions are close to the origin of the
pole-zero pattern, with respect to the radius of the bandwidth circle. In al these
examples the corner frequencies of the uncompensated poles are fixed at 1% of the
available bandwidth. The exact position is not relevant because poles locate at 10% or
0.1% will result in nearly similar root-loci. The remaining pole positions are adjusted by
the compensation, when required.

Various rules of thumb may be extracted from these typical examples. At least the
commonly known rules are of value, such as:
All root loci start from the positions of the polesin the loop.
All extrapolated root loci end at the positions of the zero in the loop or end in
infinity, when the loop gain is expanded to infinity.
The poles and zeros pass for virtual magnets that ‘'repel’ the root locus lines with
poles and ‘attract' the root locus lines with zeros.
Further, these plots show that:
All compensating poles and all phantom zeros are located near the bandwidth
circle, when a logarithmic scale was used.
Most phantom zeros are located inside the bandwidth circle.
Most compensating poles are located outside the bandwidth circle.
A magnitude response that emphasizes the high end of the passband (Chebyshev
low-pass transfer) requires an increase in magnitude for the phantom zeros or a
decrease in magnitude for the compensating poles. The converse holds for a
passband with a smoothed magnitude response (Bessal).
Compensation using the insertion of rwo or more phantom zeros requires a complex
pair of zeros.
Compensation by displacement of rwo or more poles requires a complex pair of
poles.
Theinsertion of rwo or more phantom zeros requires a complex pair of zeros.
Thwe empirical rules are valuable for a first guess on the location where the phantom
zeros should be inserted or whereto the poles should be moved.

(138) Wideband feedback synthesis R.F.M. van den Brink



5.3 Compensation synthesis for feedback amplifiers 5-33

5.3.4. Examples of loops with dominant compensation

The typical examples in section 5.3.3 were intended to get experience in the
interpretation of computer generated root-locus patterns. They are applicable for manual
compensation synthesis in a frequency band in which primary poles and dominant poles
are amost equal.

Manual synthesis of complex feedback loops, such as the examples in section 4.4.3, is
next to impossible, and must rely on automated synthesis. This subsection 5.3.4
demonstrates the compensation of realistic feedback loops.

We start from an arbitrary example of a loop covering three cascoded amplifier stages.
In section 4.4.3 three examples of transimpedance feedback amplifiers are discussed to
show their associated loop gain as Bode plot and as pole-zero pattern. The loop of
example b (cascoded amplifier stages) was modeled with six poles and three zeros up to
3 GHz.
At first, the available bandwidth was estimated and rated at 490 MHz. Next, the loop
was deflated with a dominant approximation of four dominant poles, and one dominant
zero. Because this dominant zero is located in the right half plane, further deflation by
pole-zero cancellation is out of the question. Finally, the synthesis algorithm is applied
to the deflated loop, to produce one of the results of figure 5.13.
Three different compensation solutions were evaluated for a Butterworth passband:

No phantom zeros and a 4 order profiled compensator

One phantom zero and a 3™ order profiled compensator

Two phantom zeros and a 2™ order profiled compensator
The plotsin figure 5.13 show that the more phantom zeros are available for use, the less
attenuation is required in the profiled compensator, and the lower its transfer order will
be. For convenience, the parasitic poles are ignored that are generated in the phantom
compensator.
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Fig 5.13  Examples of the magnitude response of the required
compensation for a dominant 4" order feedback loop. The numbers 0,1,2
refer to the number of phantom zeros that are inserted in the loop.

The effective-aperture that arises from the compensated loop is shown in figure 5.14. In
this plot, the dominant compensation is combined with all the poles and zeros of the
uncompensated loop. As a result, the magnitude responses differ from the specified
passband, especially above the passband.

Note that the ripple on the deviation from the specified passband increases with the
number of phantom zeros. This illustrates that phantom compensation is not always
preferable to other compensation techniques, as was stated by Nordholt [406:p175]. We
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emphasize that the efficiency of phantom compensation is deteriorated by its own
parasitic poles.
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Fig 5.14 Examples of the effective-aperture that is associated with the
compensation of figure 5.13. The numbers 0,1,2 refer to the number of
phantom zeros that are inserted in the loop.

All the feedback loops mentioned here are stable. This is demonstrated in the root-locus
plot of figure 5.15. Both uncompensated and compensated loops are plotted, for the
situation that one phantom zero is inserted.

The mirrored positions of some poles, with respect to the RHP-zeros, are all out of
recognition. This is because those positions would have captured in a modified root-
locus plot where the singularities are replaced by their dominant counterparts. The
complexity of the current root-locus plot illustrates why manual synthesis will fail for
these loops.
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Fig 5.15 Example of a reliable root-locus plot. The uncompensated loop
was modeled with six poles and three zeros. The compensation has added
one phantom zero and a third order profiled compensator.

5.3.5. Conclusions

In conclusion, the difficulties are discussed that arise when the order of the loop transfer
function is too high for compensation of all relevant singularities. Conventional
compensation methods will then be inadequate. The assistance of circuit optimizers may
then become crucial, however they require realistic design goals.

A bandpass synthesis algorithm is developed that provides an accurate estimation of the
effective-aperture, when optimal passive compensation is applied. This transfer function,
the specific passband, is extracted from the poles and zeros in the loop using the
aperture analyses of section 5.1 and the deflation algorithms of section 4.5.

The bandpass synthesis is robust and is proofed against RHP-zeros in (right half plane).
The algorithm let these zeros show up as pseudo delay. This means that the pole-zero
pattern of the predicted effective-aperture includes a mirrored pole-zero pair.
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The synthesized specific passband is of direct use as input for automated circuit
optimization.

A compensation synthesis algorithm has been developed, in terms of poles and zeros. As
input, it requires the result of the specific passband calculation and the number of
phantom zeros that is required. As output, it provides an accurate estimation of the
required transfer functions of the two compensation networks: profiled compensator (in
forward amplifier) and phantom compensator (in feedback network).

The designer can use this for assessing the feasibility of the compensation. If it is
feasible then it is of direct use in designing the compensation network configuration.
Thisis significant simpler than designing it from scratch.

An optimizer may fine tune the compensating elements for optimal performance.

The performance is demonstrated of the compensation synthesis algorithm, in the
exceptional case that all poles of the loop are compensated (full compensation). These
examples are primarily intended for pattern recognition when assessing root-locus
patterns.

Furthermore, the performance of the compensation synthesis algorithm is demonstrated
in the realistic situation that the loop has many poles and zeros, of which a few of them
are dominant (dominant compensation). It demonstrated that the loop of example "b" in
section 4.4.3 is compensatable, although higher order compensation networks are
required.
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