

for building quantum computers

Rob F.M. van den Brink 20 sept 2020

Why standardization?

To solve the following problem:

- Your product is identified as best in class
- A selected group of customers has confirmed this claim
- However, it is does not fit nicely into mainstream QC implementations
 - Customers have to do significant modifications to their installed base
 - So they will buy lower-performing products from your competitor

Solution: commonly accepted set of specifications

- Interworking between products
- Modules that can interwork with each other
- Interfaces between those modules that are compatible

Secure those specification at an "official" place

The primary stake holders are industrial partners, NOT the academia!!

Step 1: get agreement on modularity of QC

The most simple description of modularity in a quantum computer

Software layers

Superconducting hardware

Ion trap hardware

Other hardware solutions

Step 1: get agreement on modularity of QC

The most simple description of modularity in a quantum computer

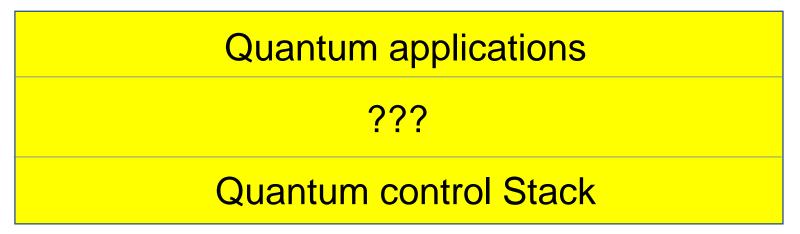
Quantum applications
???
Quantum control Stack

Superconducting hardware

Quantum Control Unit

Quantum Highway

Quantum Processor


Ion trap hardware

Other hardware solutions

Step 1: get agreement on modularity of QC

The most simple description of modularity in a quantum computer

QBLOX

Quantum Control Unit

Delft
Circuits

Quantum Highway
Circuits

Quantum Processor

Ion trap hardware Other hardware solutions

Today we don't have consensus on this YET!!!

Step 2: Identify what to standardize \rightarrow See "N010"

QCU: Quantum Control Unit (room temperature electronics)

- Functional description for pulses and read-out
- Signal levels, sensitivity, noise floors, pulse shapes, etc
- Instruction set and protocol to communicate with higher software layers
- etc

QCH: Quantum Control Highway (wiring into cryogenic environment)

- Functional description: filtering, coupling, amplification, ...
- Transmission requirements: loss, bandwidth, crosstalk, ...
- Thermal requirement: max heat flow, thermal clamping, etc.
- Vacuum requirements: thou shalt not leak air into my fridge
- Footprint requirements: How to feed signals into >1000 qubits
- Connectivity requirements: with both QCU and QPU

QPU: Quantum Processor Unit (wiring into cryogenic environment)

• Signal levels, pulse shapes, readout, ...

Step 3: Cosigned contributions to FGQT

Cosigned by at least a few vendors of quantum solutions

- 1. Cosigned contribution on desired modularity
- Restricted to gate-based super conduction quantum computers (or at least covering our busines interests
- 2. Cosigned contribution on standardization needs
- Just a list of identified topics
- NO values, TODAY nothing specified
- Contribution N010 (june 2020) provides examples

