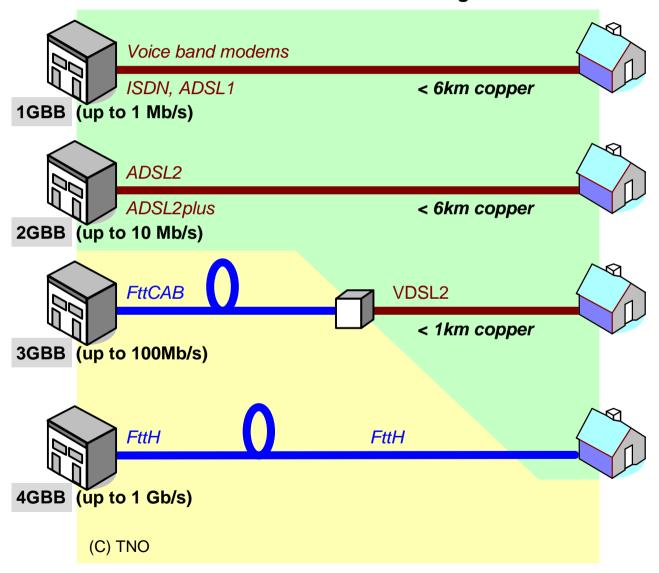
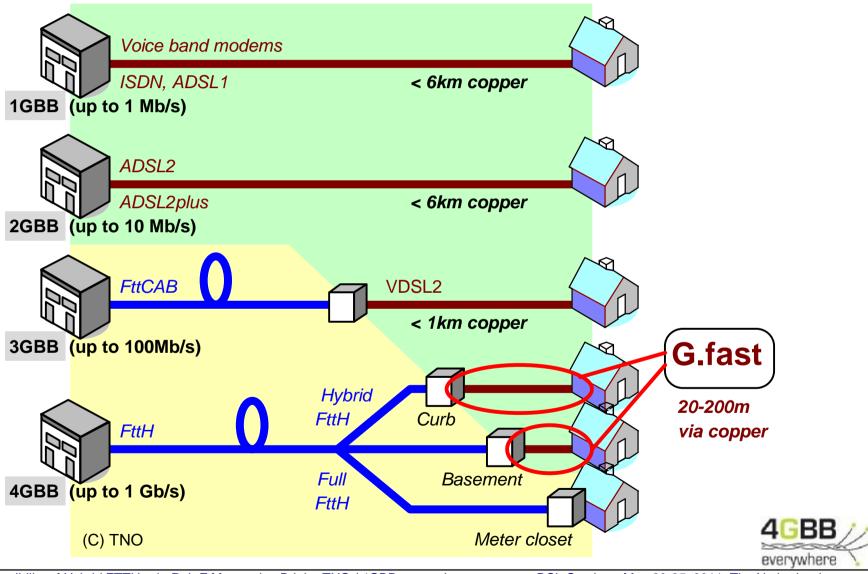


Feasibility of hybrid FttH solutions


Rob F.M. van den Brink

Hybrid FttH, what do we mean?


Evolution of telco solutions in offering Broadband

Hybrid FttH, what do we mean?

Evolution of telco solutions in offering Broadband

Hybrid FttH, what do we mean?

Alternative names:

- FttD Distribution point / Drop wire
- FttB Building
- FttC Curb
- FttMDU Multi Dwelling Unit
- •

Names in this presentation:

- "Hybrid" <u>and</u> "Full" FttH, just multiple flavors of FttH
- "G.fast" (ITU name): copper technology to bridge the last 20-200m
- "fiber speed": hundreds of Mb/s to the homes
- "4GBB": a service package consuming 100-1000Mb/s

Aims of the 4GBB Consortium

- To solve feasibility questions about Hybrid FttH:
 - When Techno economic feasibility
 - Where Topology feasibility
 - How Technical feasibility (copper + equipment)

- To bring the industry into motion
 - by initiating standardization in ITU-T
 - let operators think about requirements
 - let vendors start developping the technology

4GBB Consortium works on all these topics in parallel since 2009

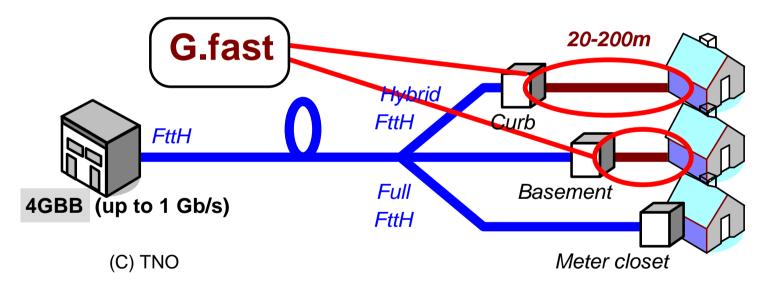
Solving feasibility questions

FttH in multiple flavors: "full" and "hybrid"

When: Hybrid, when it has clear techno-economic advantages

- to save costs for digging/installation by reusing existing copper
- to speed-up installation time, so faster roll-out

Where: Hybrid / Full on a case by case basis


- appartment buildings, multi-tenant houses, city centers
- FttH inside the Home: 80%? full fiber
- FttH upto the Home: 20%? hybrid fiber

Solving feasibility questions

- How: hybrid = reusing existing wiring (only when attractive)
 - via basement, wall-boxes (house front), footway boxes (curb), etc.
 - up to 1 Gb/s, via the last 20-200m existing copper
 - via single or double wire-pairs (bonding doubles the bitrate)
 - reverse power feeding when needed (from CPE side)

By using a new DSL technology, up to 1 Gb/s è "G.fast",

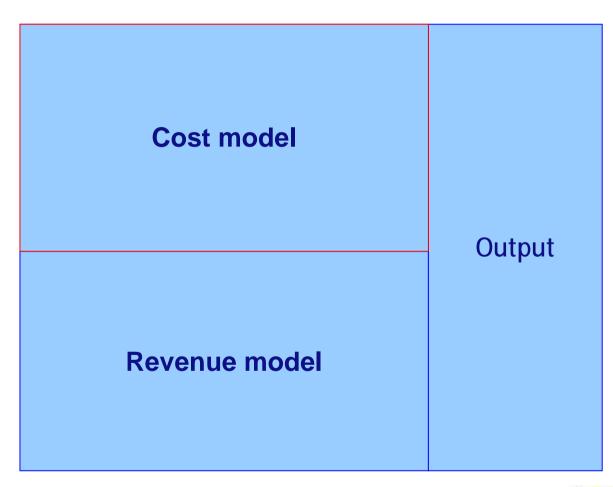
Techno-Economic Drivers:

- Cable solutions (DOCSIS) are fierce competitors
- Investments for Full FttH are high à too high? à Churn?
- Installation times for Full FttH are long à too long? à Churn?

Techno-Economic Opportunities:

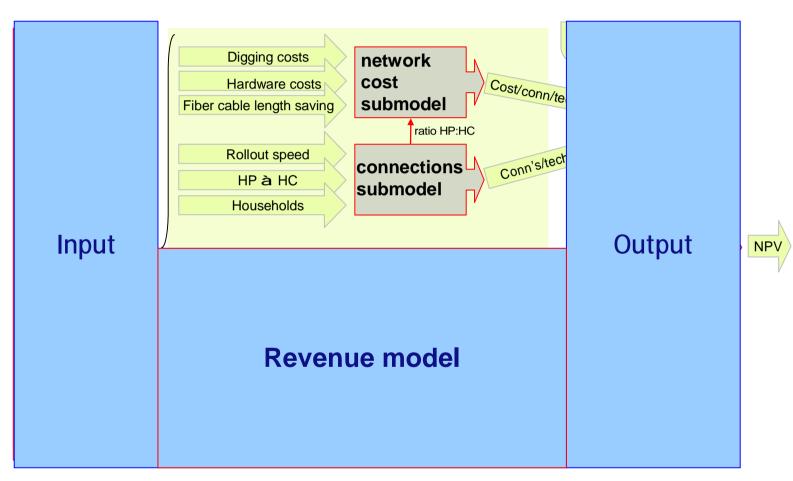
- Hybrid FttH may reduce costs
- <u>Hybrid</u> FttH may speed-up deployment
- Both can increase market share

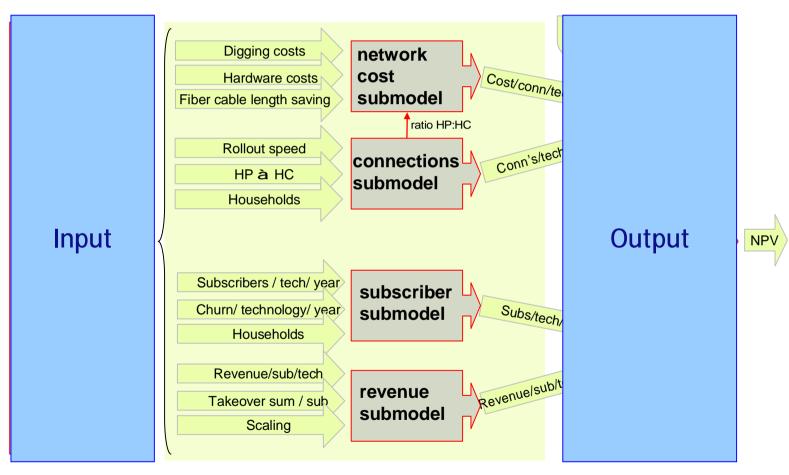
To quantify this, we need a calculation model for comparing Hybrid with Full FttH

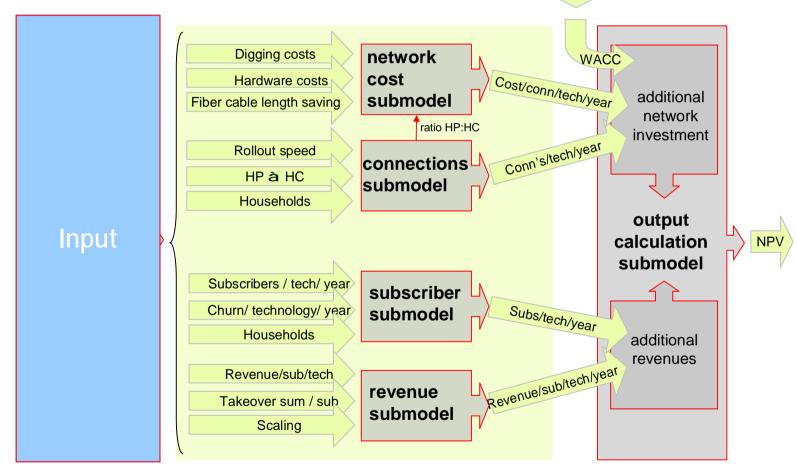


Creation of a calculation model

Cost model

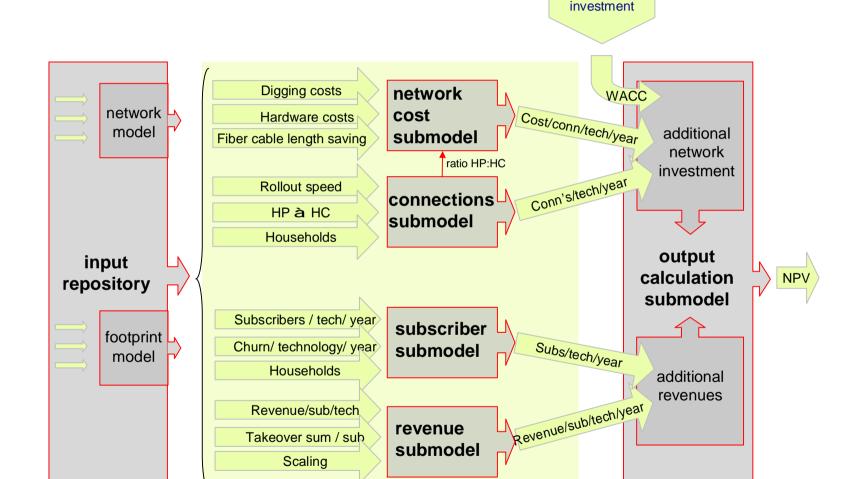






Creation of a calculation model

à Interest à Risk of investment



à Interestà Risk of

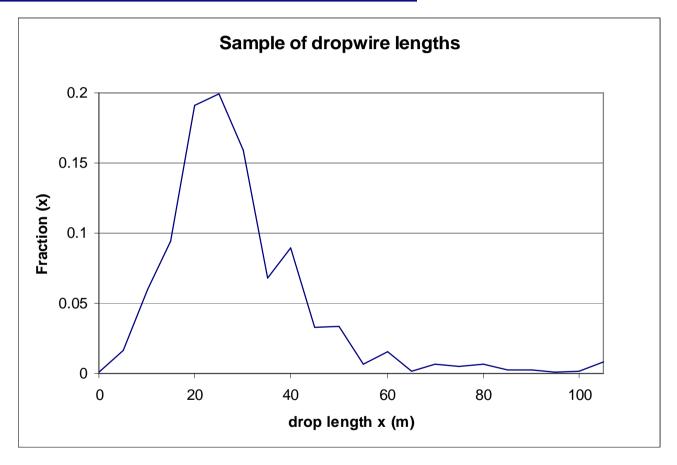
Solving Q1: techno-economic feasibility ("when")

Solving Q2: topology feasibility ("where")

Questions:

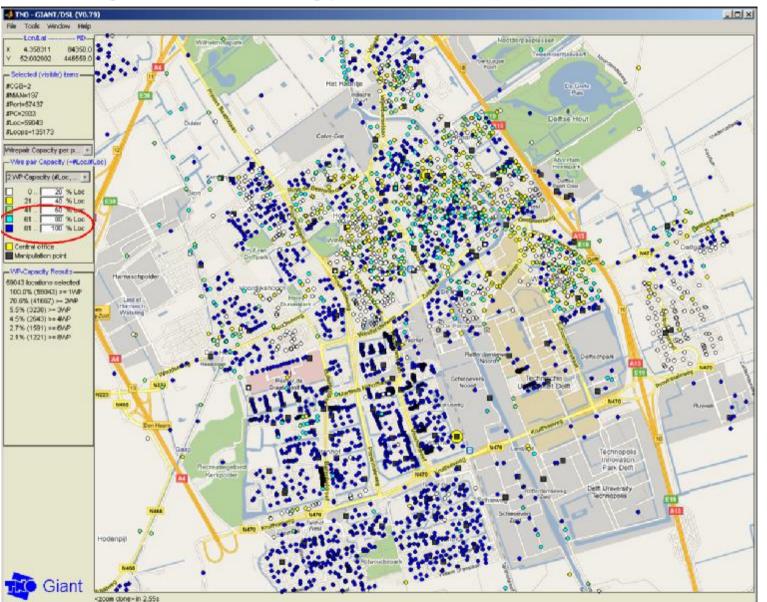
- How many locations are suitable (and where)
- What are their copper length
- How often can we use a double wire pair?

• Answers :


country-specific

Solving Q2: topology feasibility ("where")

Some answers for the UK Network:



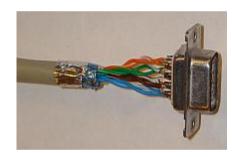
Sample drop wire lengths, taken from ETSI TR 102 629 (Reverse Power Feed for Remote Nodes)

Solving Q2: topology feasibility ("where")

A typical Dutch city

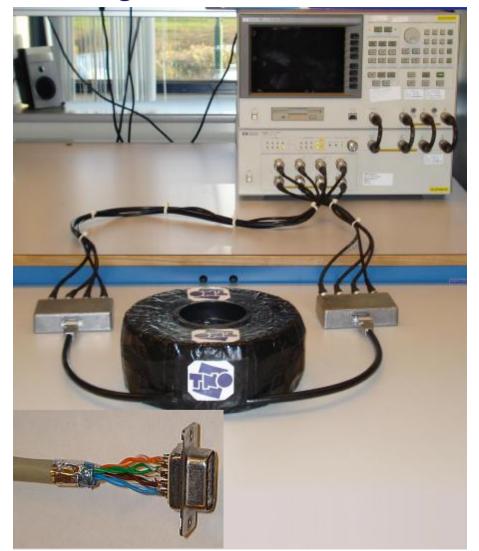
Bold markers denote 80-100% has a double wire pair

>70% in this city (example)



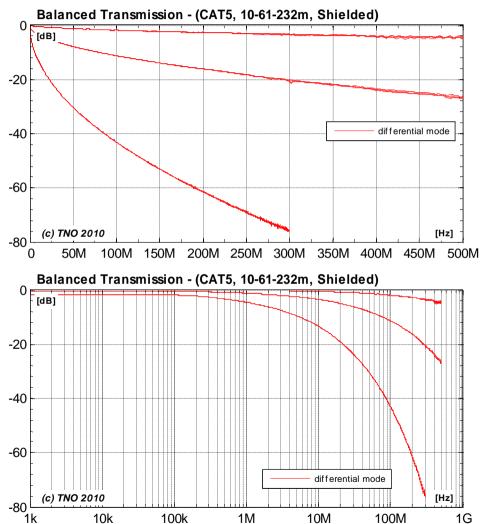
Solving Q3: Technical feasibility ("how") Characterizing copper cables up to 500 MHz

- Develop measurement methods
 - create setups up to 500MHz (TNO, TID, BT, EAB)
 - q verify these setups via a Round Robin Test
 - q facilities to measure impulse noise and RFI
- Do a lot of measurements
 - q twisted pair cabling
 - q irregularities, like splices, manipulation boxes, etc.
 - q all kinds of ingress noise measurement
- Develop simulation models
 - q two-port models for single-pair cable transmission
 - q multi-port models for harmonized cable transmission (vectoring)
 - q statistic descriptions of impulse noise
- Do simulations
 - q define meaningful scenario's
 - q predict performance and throughput



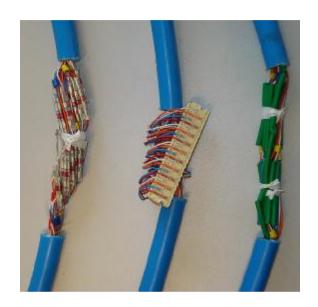
Solving Q3: Technical feasibility, cable measurements

Measurement setup up to 500MHz

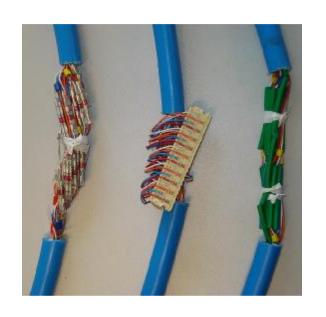

Solving Q3: Technical feasibility, cable measurements

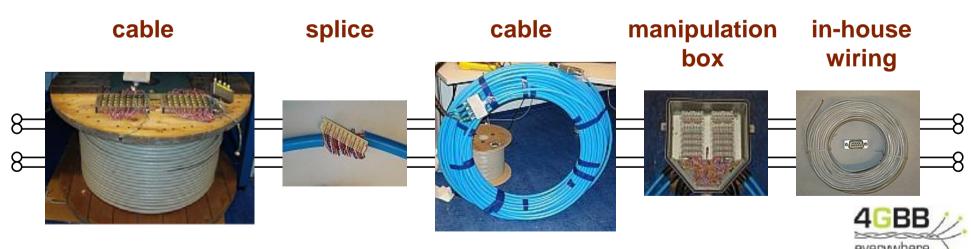
Characterizing copper cables: example up to 500 MHz

Balanced Transmission:


5.7 dB / 100m @ 10MHz 18.6 dB / 100m @ 100MHz

Solving Q3: Technical feasibility, cable measurements Characterizing splices and manipulation boxes





Solving Q3: Technical feasibility, cable measurements

Characterizing splices and manipulation boxes

Solving Q3: Technical feasibility, more questions

- How about Noise
 - q impulse noise, RFI
- How about attainable bitrate
 - q modeling, simulations
 - q next presentation à squeezing Gbit/s through copper
- How about line coding, modulation, transmit spectra for G.fast
- Etc.

Bringing the industry into motion

Let's initiate a standard

2009-2011

Measurements on wiring Geographic statistics Techno-economics Dissemination

BT, Telefonica, FT, TT, ...
TNO, Uni-Lund, Uni-Madrid, ...
Ericsson, UpZide, ...

Mid 2010: start operator requirements Dec 2010: presentation 45min, 100-150 p

Dec 2010: liasion to ITU

--> 6 contributions --> inspired by BBF actions

April 18: ITU-T teleconference" --> 3 contributions

Bringing the industry into motion Several other activities

- Progressing definition of G.fast
 - consolidated functional requirements
 - via Broadband Forum / SPAC
 - contributions to ITU-T-SG15 (april 2011)
 - contributions about cable measurements
 - preliminary requirements (BBF)
- Making the concept known
 - white paper on "Enabling 4GBB" in Broadband Journal of the SCTE (same text also available during this seminar)
 - Presentations DSL Seminar 2011, 2010, 2009
 - More on website <u>www.4GBB.eu</u>

GREEK | INVADEDOS SURO VIA THE LAST COMPER DROP OF A HYDRID FTTH DEBLOYMENT

Enabling 4GBB via the last copper drop of a hybrid FttH deployment

White Paper on DSL - Rob F.M. van den Brisk, TNO, The Netherlands, April 2011

listment. Among derivigements am groups the very for Tokina in film handered gibb to mel among to our off girther senses. Rose almalogement am to heigh the first the Malle of Philm comlines admitted to enabling the lighter serving. Plus on related the desired of the conflict of the common on imprimise the desired of the complete of the desired on interpretation of the desired to the contract and to the money of the contract and the product of the contract and to the money of the contract and the contract of the contract and to the money of the contract and the contract of the contract and the contract film and the contract of the contract and the contract film and the registration between the contract and positively registrations and more alweight on the interpretations.

1. INTRODUCTION

The public of life and on the concern deposits on besubdivity of delegation leaves to bendinal access. Demands on endough birate continue to immuse a mentional process of the process of the problem of the protocological continues and early given by a decide rougdamental a now questions of broadbard service. Contradity, across to second generation broadbard services. COSER, sequine up to 100M₂, and a continue fast interiors and taple judy has become a commodity interpretational taple judy has become a commodity interpretational taple judy has become a commodity and closed acceptability is consistent produced by a feed proceedings of references and the process of the continues of the protocological contradity produces a small proceedings of references and the contradity and the contradity that was first and 400 the section package (up to 100M₂). But you of services that will be typical for a 400M century state that part many 150 DVV channels intuiting and process. If the form of the contradity course that cover or late these will be a maintry desired for 400M to section as access to k between of up in 100M₂ and the cover

Takes as well as Cable Operators have finit over solutions for migrating their networks to delirer broadward services (DEL via twinted pair telephony winting and EnniDOCSIS via coar CATV winting). Expent I illustrates the architecture

The exists has slooken published in Procedural, Journal of the SUTE, Vol. 33 No. 2, April 2011, page 40-44.

about 1940. 1940 it is might count of incording to the Hobelinds. We appet temperate, promined before and combigable regardence to realize recounted incording to the consistent classes to expensive, and our sholl value 2.0. Who consistent classes to expensive, and our sholl value is in the confidence of more than it may not no helpful locarded, the approach to incording to stop and and protect Persons information place to their over-body person-public and the confidence of the confidence of the confidence of the property of the confidence of the

THO WHITE PAPER ON DS L) 35514 (APRIL 20)

edition being implemented by Tokeo. The use of ADDLE technologies one existing behaling winting was far lay embler for a massive migration to 2018. Higher blondo are also familie to DEC when copper loops are far Migration to 2018 is enough for Tokeo via VISL2 and when contense to do not in close to the central office, for to these colorate of the control office covers loop additionally in assemble to be plantice the covers loop additional being to.

Figure 1: Evolution of Taker schalarur in migrate enter Granderschieber Housen

To deliver over 40580 to moreous Taleon will require access naturation of access behaviours to migrate from some naturation. The way of Fell (Fee to the linear) will access naturation. The way of Fell (Fee to the linear) will be access to the feel of the linear to the linear linear

This agreesh is new concept and the copyer technology sequence for each at Hybrid Tell relation is currently leading. Hereafter, the agreement leading Hereafter, the agreement holes may promising and HU-15-015 has recently started standardisation of the equitable therefore years and the expected behinding started for working rance "O fair." This article explains the need for this new concept, its fearfailty.

- Deploying a mix of Hybrid & Full FttH looks very attractive
 - Hybrid variant may reduce cost (wrt. Full)
 - Hybrid variant may speed-up deployment (wrt. Full)
 - Both advantages reduce churn to competition (cable operators)

- Deploying a mix of Hybrid & Full FttH looks very attractive
 - Hybrid variant may reduce cost (wrt. Full)
 - Hybrid variant may speed-up deployment (wrt. Full)
 - Both advantages reduce churn to competition (cable operators)
- Hybrid FttH is feasible
 - Studies about when, where, how are ongoing in 4GBB consortium
 - Interim results are being disseminated

- Deploying a mix of Hybrid & Full FttH looks very attractive
 - Hybrid variant may reduce cost (wrt. Full)
 - Hybrid variant may speed-up deployment (wrt. Full)
 - Both advantages reduce churn to competition (cable operators)
- Hybrid FttH is feasible
 - Studies about when, where, how are ongoing in 4GBB consortium
 - Interim results are being disseminated
- Hybrid FttH is gaining more and more interest from the industry
 - "G.fast" has recently initiated within ITU-T-SG15
 - Functional requirements are being identified via BBF

- Deploying a mix of Hybrid & Full FttH looks very attractive
 - Hybrid variant may reduce cost (wrt. Full)
 - Hybrid variant may speed-up deployment (wrt. Full)
 - Both advantages reduce churn to competition (cable operators)
- Hybrid FttH is feasible
 - Studies about when, where, how are ongoing in 4GBB consortium
 - Interim results are being disseminated
- Hybrid FttH is gaining more and more interest from the industry
 - "G.fast" has recently initiated within ITU-T-SG15
 - Functional requirements are being identified via BBF

If you see a need for affordable bitrates at "fiber speed", then investigate how "Hybrid FttH" fits in your strategy

