

Europäisches Patentamt European Patent Office

Office européen des brevets

(11) **EP 0 613 262 B1**

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:28.06.2000 Bulletin 2000/26

.06.2000 Bulletin 2000/26

(21) Application number: 94200207.2

(22) Date of filing: 28.01.1994

(54) Optical noise source

Optische Rauschquelle Source de bruit optique

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

SE

(30) Priority: 24.02.1993 NL 9300347

(43) Date of publication of application: 31.08.1994 Bulletin 1994/35

(73) Proprietor: Koninklijke KPN N.V. 9726 AE Groningen (NL)

(72) Inventor:

van den Brink, Robertus Franciscus Maria NL-2331 NV Leiden (NL)

(56) References cited: EP-A- 0 503 579

(51) Int. Cl.7: H04B 10/14

- ELECTRONICS LETTERS., vol.28, no.7, 26 March 1992, STEVENAGE GB pages 629 - 631 F.M. VAN DEN BRINK ET AL 'Novel Noise Measurement Setup with High Dynamic Range for Optical Receivers'
- PATENT ABSTRACTS OF JAPAN vol. 7, no. 76 (E-167) 30 March 1983 & JP-A-58 003 431 (NIPPON DENKI)
- PATENT ABSTRACTS OF JAPAN vol. 10, no. 20 (E-376) 25 January 1986 & JP-A-60 182 238 (OKIKAWA KOUSEI)

P 0 613 262 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

30

Description

A Background of the invention

[0001] The invention relates to an optical noise source comprising

- narrowband light source means for generating a modulated optical signal and provided with a base input for receiving an electrical periodic signal for modulating a narrowband optical signal, and
- an interference filter, based on path length difference, for receiving the modulated optical signal and for generating an optical composition signal.

[0002] Such an optical noise source is disclosed by an article "Measurement of frequency response of photoreceivers using self-homodyne method", by J. Wang, U. Krüger, B. Schwarz and K. Petermann, from "ELEC-TRONICS LETTERS" dated 25 May 1989, Volume 25, No. 11, pages 722, 723. This mentions narrowband light source means which comprise a laser diode (narrowband light source) for generating a narrowband optical signal. The anode (base input) of the laser diode is fed with a sinusoidal current (electrical periodic signal) with which the narrowband optical signal is modulated. Said modulated optical signal is fed to an interference filter which consists of two 3 dB couplers with, therebetween, two pieces of glass fibre having a mutual path length difference of approximately 1 km. The interference filter generates the optical composition signal which is composed of two mutually different frequency-modulated signals. As soon as a photodiode is illuminated with this optical composition signal, an electrical photodiode noise signal is produced whose (electrical) noise bandwidth is equal to the maximum instantaneous frequency difference between the two optical signals. If the spectrum of the electrical photodiode noise signal is to be as flat as possible within the chosen noise bandwidth (which is specified with the amplitude of the electrical periodic signal), the path length difference on which the interference filter is based must be considerably larger than the coherence length of the light source. Said coherence length, for the present-generation laser diodes, for example, is 10 metres and may increase to several kilometres for modern multi-section lasers.

[0003] This known noise source has the drawback that the interference filter needs to be based on a large path length difference (such as, for example, 1 kilometre).

B Summary of the invention

[0004] The object of the invention is, inter alia, to provide a noise source of the type mentioned in the preamble, in which it is sufficient to use an interference filter based on a considerably smaller path length difference (of, for example, 10 metres).

[0005] To this end, the noise source according to the invention is characterized in that the narrowband light source means are provided with a noise input for receiving an electrical noise signal.

[0006] By feeding the electrical noise signal to the narrowband light source means, the linewidth of the optical signal, which may or may not already have been modulated, increases, which corresponds to a decrease in the coherence length of the narrowband light source used, as a result of which it is sufficient to use an interference filter which is based on a smaller path length difference of, for example, a few metres.

[0007] The invention is based on the insight that the coherence length of a narrowband light source is inversely proportional to the linewidth of the optical signal of said light source, and that a large coherence length (and thus a small linewidth) requires a relatively large difference in delay time in the interference filter, if the spectrum of the electrical photodiode noise signal is to be as flat as possible over the chosen noise bandwidth. This relatively large difference in delay time in the interference filter is implemented by means of a large path length difference, and requires a relatively low modulation frequency in order to make the maximum instantaneous frequency difference between the interfering optical signals equal to the optical frequency swing. As a result, the noise bandwidth reaches a maximum, equal to the available optical frequency swing. By feeding the electrical noise signal to the narrowband light source means, the linewidth of the optical signal increases strongly, as a result of which it is sufficient to use a considerably smaller delay time and thus a much smaller path length difference.

[0008] It should be noted that it is known per se from EP 0,503,579 to widen the linewidth of the narrowband optical signal by feeding an electrical noise signal to narrowband light source means. It is not known therefrom, however, to reduce substantially, with the aid of this technique, the required path length difference in an interference filter, in which feeding in of the electrical noise signal may take place both before and after the modulation.

[0009] A first embodiment of the noise source according to the invention is characterized in that a bandwidth of the electrical noise signal is smaller than a frequency of the electrical periodic signal.

[0010] As a result of the electrical noise signal to be supplied to the narrowband light source means being limited in frequency, for example via a fourth-order low-pass filter, the concentration of noise power in the chosen noise bandwidth increases, owing to which noise power is handled more efficiently and less noise power is wasted outside the chosen noise bandwidth.

[0011] A second embodiment of the noise source according to the invention is characterized in that the electrical periodic signal is triangular.

[0012] Only part of the chosen noise bandwidth is sufficiently flat for using it to carry out noise measure-

30

ments. A triangular electrical periodic signal results, compared to a sinusoidal electrical periodic signal having a comparable amplitude, in an electrical photodiode noise signal which can be considered as flat over a larger part of the noise bandwidth.

[0013] A third embodiment of the noise source according to the invention is characterized in that the optical noise source comprises an optical detector for detecting at least a part of the optical composition signal, which optical detector is coupled, via a filter, to an input of the narrowband light source means.

[0014] By feeding back part of the optical composition signal, the optical signal coming from the narrowband light source means is stabilized, which is of great importance for certain measurements.

[0015] A fourth embodiment of the noise source according to the invention is characterized in that the filter is a high-pass or bandpass filter with which an electrical detector is cascaded for controlling the electrical periodic signal, the input of the narrowband light source means being the base input.

[0016] The (positive) feedback via a bandpass or high-pass filter and a detector for controlling the electrical periodic signal stabilizes the spectral noise density of the electrical photodiode noise signal. Controlling in this case may comprise regulating the amplitude and/or regulating the frequency of the electrical periodic signal.

[0017] A fifth embodiment of the noise source according to the invention is characterized in that the filter is a low-pass filter for regulating a power level of the optical signal, the input of the narrowband light source means being a power input.

[0018] The (negative) feedback via a low-pass filter of a direct-current component of the optical composition signal, to regulate a power level of the optical signal to be generated by the narrowband light source means, stabilizes said power level. It is already known per se to feed back the optical output of a light source directly for the purpose of stabilization, without involving the interference filter. A separate circuit, required in this case for stabilizing the interference filter, such as, for example, polarization control, becomes unnecessary in the case of this fifth embodiment.

[0019] It is obviously of further advantage if the fourth and fifth embodiment are used in combination.

[0020] A sixth embodiment of the light source according to the invention is characterized in that the narrowband light source means comprise an optical input for receiving the narrowband optical signal.

[0021] In this embodiment, the narrowband light source means therefore do not comprise a light source but are fed with the narrowband optical signal via the optical input.

[0022] A seventh embodiment of the noise source according to the invention is characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the optical input and of which an input forms the base input.

[0023] Via said optical modulator, which is fed with the electrical periodic signal, the narrowband optical signal received via the optical input is modulated in frequency. Obviously other forms of argument modulation are likewise possible, such as, for example, phase modulation.

[0024] An eighth embodiment of the noise source according to the invention is characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the optical input and of which an input forms the noise input.

[0025] Via said optical modulator, which is fed with the electrical noise signal, the narrowband optical signal received via the optical input is modulated in frequency with said electrical noise signal. This can take place both before and after the narrowband optical signal is frequency-modulated with the electrical periodic signal. Obviously other forms of argument modulation are likewise possible, such as, for example, phase modulation. [0026] It is obviously of further advantage if both the

[0026] It is obviously of further advantage if both the said modulators are used simultaneously or are combined into one modulator.

A ninth embodiment of the noise source according to the invention is characterized in that the narrowband light source means comprise an optical amplitude modulator which is optically coupled to the optical input and of which an input forms a power input. [0028] Via this optical modulator, which is fed with an electrical DC signal, the narrowband optical signal received via the optical input is amplitude-modulated with said electrical DC signal. This is done to adjust the power level of the narrowband optical signal to be generated by the narrowband light source means. This can take place both before and after the narrowband optical signal is frequency-modulated with the electrical periodic signal and is modulated with the electrical noise signal.

[0029] A tenth embodiment of the noise source according to the invention is characterized in that the narrowband light source means comprise a narrowband light source for generating the narrowband optical signal.

[0030] In this embodiment, the narrowband light source means therefore comprise the narrowband light source which generates the narrowband optical signal.

[0031] An eleventh embodiment of the noise source according to the invention is characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the narrowband light source and of which an input forms the base input.

[0032] Via this optical modulator, which is fed with the electrical periodic signal, the narrowband optical signal to be generated by the narrowband light source is frequency-modulated.

[0033] A twelfth embodiment of the noise source according to the invention is characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the narrowband

20

light source and of which an input forms the noise input.

[0034] Via this optical modulator, which is fed with the electrical noise signal, the narrowband optical signal to be generated by the narrowband light source is modulated with said electrical noise signal. This may take place both before and after the narrowband optical signal is frequency-modulated with the electrical periodic signal.

[0035] It is obviously of further advantage if both the said modulators are used simultaneously or are combined into one modulator.

[0036] A thirteenth embodiment of the noise source according to the invention is characterized in that the narrowband light source means comprise an optical amplitude modulator which is optically coupled to the input of the narrowband light source and of which an input forms a power input.

[0037] Via this optical modulator, which is fed with an electrical DC signal, the narrowband optical signal received via the optical input is amplitude-modulated with said electrical DC signal. This is done to adjust the power level of the narrowband optical signal to be generated by the narrowband light source means. This can take place both before and after the narrowband optical signal is frequency-modulated with the electrical periodic signal and is modulated with the electrical noise signal.

[0038] A fourteenth embodiment of the noise source according to the invention is characterized in that the narrowband light source is provided with an input which forms the base input.

[0039] In this case, the narrowband light source is itself provided with the base input, thus saving a modulator.

[0040] A fifteenth embodiment of the noise source according to the invention is characterized in that the narrowband light source is provided with an input which forms the noise input.

[0041] In this case, the narrowband light source is itself provided with the noise input, thus saving a modulator.

[0042] A sixteenth embodiment of the noise source according to the invention is characterized in that the narrowband light source is provided with an input which forms a power input.

[0043] In this case, the narrowband light source is itself provided with the power input, thus saving an amplitude modulator.

C References

[0044]

"Measurement of frequency response of photoreceivers using self-homodyne method", by J. Wang, U. Krüger, B. Schwarz and K. Petermann, from "ELECTRONICS LETTERS", dated 25 May 1989, Vol. 25, No. 11, pages 722, 723.

- "Novel noise measurement setup with high dynamic range for optical receivers", by R.F.M. van den Brink, E. Drijver and M.O. van Deventer, from "ELECTRONICS LETTERS" dated 26th March 1992, Vol. 28, No. 7, pages 629, 630.
- EP 0,503,579

[0045] All the references mentioned are regarded as being incorporated into the present patent application.

D Illustrative embodiment

[0046] The invention will be explained in more detail with reference to illustrative embodiments depicted in the figures, in which:

- Figure 1 shows a first optical noise source according to the invention,
- Figure 2 shows a second optical noise source according to the invention, and
- Figure 3 shows a third optical noise source according to the invention.

[0047] The first optical noise source depicted in Figure 1 comprises a narrowband light source 2 such as, for example, a laser diode, of which the cathode is connected to ground and of which the anode forms a power input 3 for receiving an electrical DC signal. Said anode further forms, via a first capacitor, a base input 4 for receiving an electrical periodic signal (such as, for example, a sinusoidal signal for the purpose of frequency modulation of a narrowband optical signal to be emitted by the narrowband light source 2) and further forms, via a second capacitor, a noise input 5 for receiving an electrical noise signal. The first optical noise source depicted in Figure 1 further comprises an interference filter 20, based on path length difference, for receiving the modulated optical signal and for generating an optical composition signal. Said interference filter 20 comprises, for example, a first glass fibre 21 and a second glass fibre 22 which has a greater length than glass fibre 21. Both glass fibres 21, 22 are coupled to one another at a receiving side via a 3 dB coupler 23 and are coupled to one another, at an emitting side, via a 3 dB coupler 24. In said first optical noise source depicted in Figure 1, the narrowband light source 2 forms the narrowband light source means.

[0048] By means of a DC signal to be fed to power input 3, the power of the light source 2 is adjusted, and by means of the periodic signal to be fed to base input 4, the optical signal is modulated. In this arrangement, a small variation of the laser diode current will simultaneously cause both a variation in the optical power and a low parasitic variation in the optical frequency. The modulated optical signal is split in the 3 dB coupler 23 in the interference filter 20. Owing to the optical signals thus split off each covering a different path length in the glass

fibres 21, 22 and then being combined in the 3 dB coupler 24, the interference filter 20 generates the composition signal which is formed by two different frequency-modulated optical signals. If a measurement object such as, for example, a photodiode is illuminated with said optical composition signal, an electrical photodiode noise signal is produced whose (electrical) noise bandwidth is equal to the largest instantaneous frequency difference between the optical signals at the ends of the glass fibres 21, 22. Said frequency difference is at a maximum if the period of the electrical periodic signal is chosen to be equal to twice the delay time of the interference filter 20.

[0049] If the spectrum of the electrical photodiode noise signal is to be as flat as possible within the chosen noise bandwidth (which is specified by the amplitude of the electrical periodic signal), the path length difference on which the interference filter 20 is based must be considerably greater than the coherence length of the light source 2. By feeding the noise signal to the noise input 5, the linewidth of the optical signal increases, which corresponds to a decrease in the coherence length of the light source 2, as a result of which it is sufficient to use a shorter delay time and thus a smaller path length difference in the interference filter 20 and thus a higher modulation frequency of the periodic signal. Consequently, the required path length difference in the interference filter decreases substantially, which is of great advantage in various respects (such as costs and handling). If the laser diode 2 is a modern multi-section laser which can more readily be frequency-modulated than, for example, a DFB (distributed feedback) laser and which is equipped with separate inputs for power modulation and frequency modulation, a variation in the optical frequency will be associated with a considerably smaller parasitic variation in the optical power, which is obviously advantageous. Without the noise signal being fed in, the desired path length difference in the interference filter 20, when using this modern multi-section laser, would have become unacceptably large.

[0050] The second optical noise source depicted in Figure 2 comprises narrowband light source means 1 which comprise the narrowband light source 2, an optical modulator 10, which is optically coupled to the narrowband light source 2 and has a noise input 5, and an optical modulator 9 which is optically coupled (via the optical modulator 10) to the narrowband light source 2 and has a base input 4. The second optical noise source depicted in Figure 2 further comprises the interference filter 20, based on path length difference, for receiving the modulated optical signal and for generating the optical composition signal. The cathode of the narrowband light source 2 is connected to ground, and the anode is connected to an output of an adjustable amplifier/attenuator circuit 16, of which an input forms the power input 3. Said second optical noise source is also equipped with an optical detector 11 such as, for example, a photodiode with associated electronics, for

detecting at least part of the optical composition signal. Optical detector 11 is coupled to a low-pass filter 15 which is coupled to a control input of the adjustable amplifier/attenuator circuit 16 and is coupled, via a bandpass filter 12, to an input of an electrical detector 13, of which an output is coupled to a control input of an adjustable amplifier/attenuator circuit 14. An output of adjustable amplifier/attenuator circuit 14 is connected to the base input 4, and an input of adjustable amplifier/attenuator circuit 14 forms a further base input 6 for receiving the electrical periodic signals. Said second optical noise source further comprises a low-pass filter 17 which is situated between the noise input 5 and a further noise input 7 for receiving the noise signal.

[0051] By means of the DC signal to be fed to power input 3, the power of the light source 2 is adjusted via the adjustable amplifier/attenuator circuit 16 which itself is adjusted via the control input. In so doing, an increase in the signal power level detected by the photodiode 11 should result in an increase in the attenuation or a decrease in the gain of the adjustable amplifier/attenuator circuit 16, and a decrease in the signal power level detected by the photodiode 11 should result in a decrease in the attenuation or an increase in the gain of the adjustable amplifier/attenuator circuit 16 (i.e. negative feedback). Such a feedback results in stabilization of the optical power level generated by the narrowband light source 2.

[0052] By means of the optical modulator 10, the optical signal generated by the narrowband light source 2 is frequency-modulated with the noise signal, which, as reported earlier, makes it possible to shorten considerably the path length difference in the interference filter 20. By limiting the frequency of the noise signal by means of the low-pass filter 17, the concentration of noise power in the chosen noise bandwidth increases, as a result of which the noise power is handled more efficiently and less noise power is wasted outside the chosen noise bandwidth.

By means of the optical modulator 9, the **[0053]** optical signal, which has already been frequency-modulated with the noise signal, is further frequency-modulated with the periodic signal which is fed in via the adjustable amplifier/attenuator circuit 14. The latter is adjusted via the control input itself by means of the signal coming from the detector 13 (such as, for example, a top detector, a power detector or a true root mean square detector). In so doing, a decrease in the signal power level detected by the photodiode 11 in a specified frequency band should result in an increase in the attenuation or a decrease in the gain of the adjustable amplifier/attenuator circuit 14, and an increase in the signal power level in this frequency band detected by the photodiode 11 should result in a decrease in the attenuation or an increase in the gain of the adjustable amplifier/attenuator circuit 14 (i.e. positive feedback). Such a feedback results in stabilization of the spectral noise density of the signal detected by the photodiode 11.

30

35

40

45

50

55

Instead of a bandpass filter 12 it would also be possible to use a high-pass filter, if the bandwidth of photodiode 11 with the associated electronics or of detector 13 is significantly lower than the noise bandwidth.

[0054] Feeding in a triangular electrical periodic signal in comparison results in a sinusoidal electrical periodic signal having an amplitude comparable to an electrical photodiode noise signal which can be regarded as flat over a larger part of the noise bandwidth.

[0055] It should be noted that the sequential order of the two optical modulators 9, 10 is completely arbitrary. It would further be possible to combine the two optical modulators 9, 10 into one optical modulator having one input, which input, as depicted in Figure 1, is fed with the noise signal and the periodic signal via capacitors.

[0056] Both adjustable amplifier/attenuator circuits 14, 16 can be implemented in a manner known to those skilled in the art, using, for example, commercially available ICs. Since the adjustment of the periodic signal can take place not only on the basis of amplitude variation, but, for example, also on the basis of frequency variation, the adjustable amplifier/attenuator circuit 14 could in that case be implemented, in a manner known to those skilled in the art, using an adjustable frequency filter. Amplifier/attenuator circuit 16 could obviously also be embodied, in a manner known to those skilled in the art, as an addition or subtraction circuit.

[0057] The third optical noise source depicted in Figure 3 comprises narrowband light source means 1 which are equipped with an optical modulator 8 having a power input 3 for receiving the DC signal for amplitude modulation of an optical signal coming from the narrowband light source 2, with the optical modulator 9 having the base input 4 for receiving the electrical periodic signal, and with the optical modulator 10 having the noise input 5 for receiving the noise signal. The sequential order of the three optical modulators 8, 9, 10 is again completely arbitrary, and both optical modulators 9, 10 could be combined into one optical modulator having one input, which input, as depicted in Figure 1, is fed with the noise signal and the periodic signal via capacitors. Said third optical noise source further comprises the interference filter 20.

[0058] Apart from the fact that the third optical noise source depicted in Figure 3 is not itself equipped with the narrowband light source 2, but only needs to be fed with the optical signal thereof, and the power level of said optical signal is controlled via the optical modulator 8, the mode of operation is otherwise in accordance with the first optical noise source depicted in Figure 1 and the second optical noise source depicted in Figure 2, it obviously being possible to use, in the case of said third optical noise source, both feedbacks, low-pass filter 17 and sinusoidal or triangular periodic signals. In so doing, the same measurement setup (third optical noise source) can be employed at different optical frequencies

by replacing the external narrowband light source 2 by a different specimen having a different optical frequency.

Claims

- 1. Optical noise source comprising
 - narrowband light source means for generating a modulated optical signal and provided with a base input for receiving an electrical periodic signal for modulating a narrowband optical signal, and
 - an interference filter, based on path length difference, for receiving the modulated optical signal and for generating an optical composition signal, characterized in that the narrowband light source means are provided with a noise input for receiving an electrical noise signal.
- 20 2. Optical noise source according to Claim 1, characterized in that a bandwidth of the electrical noise signal is smaller than a frequency of the electrical periodic signal.
- 25 **3.** Optical noise source according to Claim 1 or 2, characterized in that the electrical periodic signal is triangular.
 - 4. Optical noise source according to Claim 1, 2 or 3, characterized in that the optical noise source comprises an optical detector for detecting at least a part of the optical composition signal, which optical detector is coupled, via a filter, to an input of the narrowband light source means.
 - 5. Optical noise source according to Claim 4, characterized in that the filter is a high-pass or bandpass filter with which an electrical detector is cascaded for controlling the electrical periodic signal, the input of the narrowband light source means being the base input.
 - 6. Optical noise source according to Claim 4, characterized in that the filter is a low-pass filter for regulating a power level of the optical signal, the input of the narrowband light source means being a power input.
 - 7. Optical noise source according to Claim 1, 2, 3, 4, 5 or 6, characterized in that the narrowband light source means comprise an optical input for receiving the narrowband optical signal.
 - 8. Optical noise source according to Claim 7, characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the optical input and of which an input forms the base input.

15

20

30

35

40

50

55

- 9. Optical noise source according to Claim 7 or 8, characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the optical input and of which an input forms the noise input.
- 10. Optical noise source according to Claim 7, 8 or 9, characterized in that the narrowband light source means comprise an optical amplitude modulator which is optically coupled to the optical input and of which an input forms a power input.
- **11.** Optical noise source according to Claim 1, 2, 3, 4, 5 or 6, characterized in that the narrowband light source means comprise a narrowband light source for generating the narrowband optical signal.
- **12.** Optical noise source according to Claim 11, characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the narrowband light source and of which an input forms the base input.
- 13. Optical noise source according to Claim 11, characterized in that the narrowband light source means comprise an optical modulator which is optically coupled to the narrowband light source and of which an input forms the noise input.
- 14. Optical noise source according to Claim 11, characterized in that the narrowband light source means comprise an optical amplitude modulator which is optically coupled to the input of the narrowband light source and of which an input forms a power input.
- **15.** Optical noise source according to Claim 11, 13 or 14, characterized in that the narrowband light source is provided with an input which forms the base input.
- **16.** Optical noise source according to Claim 11, 12 or 14, characterized in that the narrowband light source is provided with an input which forms the noise input.
- 17. Optical noise source according to Claim 11, 12 or 13, characterized in that the narrowband light source is provided with an input which forms a power input.

Patentansprüche

- 1. Optische Rauschquelle
 - mit schmalbandigen Lichtquellenmitteln zum Erzeugen eines modulierten optischen Signals und mit einem Basiseingang zum Empfang

- eines elektrischen periodischen Signals zum Modulieren eines schmalbandigen optischen Signals, und
- mit einem Interferenzfilter, der auf einer Pfadlängendifferenz beruht, um das modulierte optische Signal zu empfangen und um ein optisches zusammengesetztes Signal zu erzeugen,
 dadurch gekennzeichnet, dass die schmalban
 - dadurch gekennzeichnet, dass die schmalbandigen Lichtquellenmittel mit einem Rauscheingang zum Empfang eines elektrischen Rauschsignals versehen sind.
- 2. Optische Rauschquelle nach Anspruch 1, dadurch gekennzeichnet, dass eine Bandweite des elektrischen Rauschsignals kleiner ist als die Frequenz des elektrischen periodischen Signals.
- **3.** Optische Rauschquelle nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass das elektrische periodische Signal dreieckig ist.
- 4. Optische Rauschquelle nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, dass die optische Rauschquelle einen optischen Detektor zum Erfassen von mindestens einen Teil des optischen zusammengesetzten Signals aufweist, wobei der besagte optische Detektor über einen Filter mit einem Eingang eines schmalbandigen Lichtquellenmittels verbunden ist.
- 5. Optische Rauschquelle nach Anspruch 4, dadurch gekennzeichnet, dass der Filter ein Hochpass- oder Bandpass-Filter ist, mit dem ein elektrischer Detektor kaskadiert ist, um das elektrische Steuersignal zu steuern, wobei der Eingang des schmalbandigen Lichtquellenmittels der Basiseingang ist.
- 6. Optische Rauschquelle nach Anspruch 4, dadurch gekennzeichnet, dass der Filter ein Tiefpass-Filter ist, um ein Leistungsniveau des optischen Signals zu steuern, wobei der Eingang des schmalbandigen Lichtquellenmittels der Leistungseingang ist.
- 7. Optische Rauschquelle nach einem der Ansprüche 1, 2, 3, 4, 5 oder 6, dadurch gekennzeichnet, dass das schmalbandige Lichtquellenmittel einen optischen Eingang zum Empfang des schmalbandigen optischen Signals umfasst.
 - 8. Optische Rauschquelle nach Anspruch 7, dadurch gekennzeichnet, dass das schmalbandige Lichtquellenmittel einen optischen Modulator umfasst, der in optischer Weise mit dem optischen Eingang verbunden ist und von dem ein Eingang den Basiseingang bildet.
 - 9. Optische Rauschquelle nach Anspruch 7 oder 8,

10

20

25

30

45

dadurch gekennzeichnet, dass das schmalbandige Lichtquellenmittel einen optischen Modulator umfasst, der in optischer Weise mit dem optischen Eingang verbunden ist und von dem ein Eingang den Rauschquelleneingang bildet.

- 10. Optische Rauschquelle nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass die schmalbandigen Lichtquellenmittel einen optischen Amplitudenmodulator umfassen, der in optischer Weise mit dem optischen Eingang verbunden ist und von dem ein Eingang einen Leistungseingang bildet.
- 11. Optische Rauschquelle nach Anspruch 1, 2, 3, 4, 5 oder 6, dadurch gekennzeichnet, dass die schmalbandigen Lichtquellenmittel eine schmalbandige Lichtquelle zur Erzeugung des schmalbandigen optischen Signals umfasst.
- 12. Optische Rauschquelle nach Anspruch 11, dadurch gekennzeichnet, dass die schmalbandigen Lichtquellenmittel einen optischen Modulator aufweisen, der in optischer Weise mit der schmalbandigen Lichtquelle verbunden ist und von dem er einen Basiseingang bildet.
- 13. Optische Rauschquelle nach Anspruch 11, dadurch gekennzeichnet, dass die schmalbandigen Lichtquellenmittel einen optischen Modulator aufweisen, der in optischer Weise mit der schmalbandigen Lichtquelle verbunden ist und von dem ein Eingang den Rauscheingang bildet.
- 14. Optische Rauschquelle nach Anspruch 11, dadurch gekennzeichnet, dass die schmalbandigen Lichtquellenmittel einen optischen Amplitudenmodulator aufweisen, der in optischer Weise mit dem Eingang der schmalbandigen Lichtquelle verbunden ist, und von dem ein Eingang einen Leistungseingang bildet.
- **15.** Optische Rauschquelle nach Anspruch 11, 13 oder 14, dadurch gekennzeichnet, dass die schmalbandige Lichtquelle mit einem Eingang versehen ist, der den Basiseingang bildet.
- 16. Optische Rauschquelle nach Anspruch 11, 12 oder 14, dadurch gekennzeichnet, dass die schmalbandige Lichtquelle mit einem Eingang versehen ist, der den Rauscheingang bildet.
- 17. Optische Rauschquelle nach Anspruch 11, 12 oder 13, dadurch gekennzeichnet, dass die schmalbandige Lichtquelle mit einem Eingang versehen ist, der einen Leistungseingang bildet.

Revendications

- 1. Source de bruit optique comprenant
 - un moyen de source de lumière à bande étroite destiné à générer un signal optique modulé et muni d'une entrée de base destinée à recevoir un signal électrique périodique en vue de moduler un signal optique à bande étroite, et
 - un filtre à interférence, fondé sur une différence de longueurs des lignes, afin de recevoir le signal optique modulé et afin de générer un signal de composition optique, caractérisé en ce que le moyen de source de lumière à bande étroite est muni d'une entrée de bruit afin de recevoir un signal électrique de bruit.
- Source de bruit optique selon la revendication 1, caractérisée en ce qu'une bande passante du signal électrique de bruit est plus petite qu'une fréquence du signal électrique périodique.
- Source de bruit optique selon la revendication 1 ou 2, caractérisée en ce que le signal électrique périodique est triangulaire.
- 4. Source de bruit optique selon la revendication 1, 2 ou 3, caractérisée en ce que la source de bruit optique comprend un détecteur optique destiné à détecter au moins une partie du signal de composition optique, lequel détecteur optique est relié, par l'intermédiaire d'un filtre, à une entrée du moyen de source de lumière à bande étroite.
- 35 5. Source de bruit optique selon la revendication 4, caractérisée en ce que le filtre est un filtre passe-haut ou passe-bande avec lequel un détecteur électrique est mis en cascade afin de commander le signal électrique périodique, l'entrée du moyen de source de lumière à bande étroite étant l'entrée de base.
 - 6. Source de bruit optique selon la revendication 4, caractérisée en ce que le filtre est un filtre passebas destiné à réguler un niveau de puissance du signal optique, l'entrée du moyen de source de lumière à bande étroite étant une entrée de puissance.
- 50 7. Source de bruit optique selon la revendication 1, 2, 3, 4, 5 ou 6, caractérisée en ce que le moyen de source de lumière à bande étroite comprend une entrée optique destinée à recevoir le signal optique à bande étroite.
 - **8.** Source de bruit optique selon la revendication 7, caractérisée en ce que le moyen de source de lumière à bande étroite comprend un modulateur

35

optique qui est couplé optiquement à l'entrée optique et dont une entrée constitue l'entrée de base.

- 9. Source de bruit optique selon la revendication 7 ou 8, caractérisée en ce que le moyen de source de 5 lumière à bande étroite comprend un modulateur optique qui est couplé optiquement à l'entrée optique et dont une entrée constitue l'entrée de bruit.
- 10. Source de bruit optique selon la revendication 7, 8 ou 9, caractérisée en ce que le moyen de source de lumière à bande étroite comprend un modulateur d'amplitude optique qui est couplé optiquement à l'entrée optique et dont une entrée constitue une entrée de puissance.
- 11. Source de bruit optique selon la revendication 1, 2, 3, 4, 5 ou 6, caractérisée en ce que le moyen de source de lumière à bande étroite comprend une source de lumière à bande étroite destinée à générer le signal optique à bande étroite.
- 12. Source de bruit optique selon la revendication 11, caractérisée en ce que le moyen de source de lumière à bande étroite comprend un modulateur optique qui est couplé optiquement à la source de lumière à bande étroite et dont une entrée constitue l'entrée de base.
- 13. Source de bruit optique selon la revendication 11, caractérisée en ce que le moyen de source de lumière à bande étroite comprend un modulateur optique qui est couplé optiquement à la source de lumière à bande étroite et dont une entrée constitue l'entrée de bruit.
- 14. Source de bruit optique selon la revendication 11, caractérisée en ce que le moyen de source de lumière à bande étroite comprend un modulateur d'amplitude optique qui est couplé optiquement à l'entrée de la source de lumière à bande étroite et dont une entrée constitue une entrée de puissance.
- 15. Source de bruit optique selon la revendication 11, 13 ou 14, caractérisée en ce que la source de 45 lumière à bande étroite est munie d'une entrée qui constitue l'entrée de base.
- 16. Source de bruit optique selon la revendication 11, 12 ou 14, caractérisée en ce que la source de lumière à bande étroite est munie d'une entrée qui constitue l'entrée de bruit.
- 17. Source de bruit optique selon la revendication 11, 12 ou 13, caractérisée en ce que la source de 55 lumière à bande étroite est munie d'une entrée qui constitue une entrée de puissance.

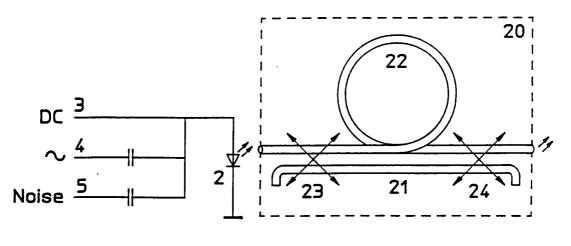


Fig. 1

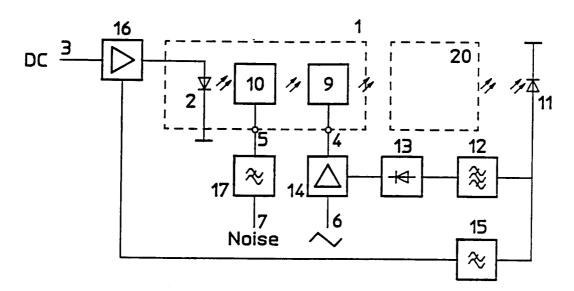


Fig. 2

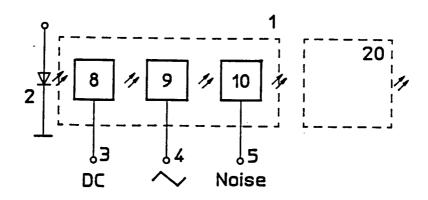


Fig. 3