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Extracting the characteristic impedance matrix
from multi-port transmission line measurements
- DRAFT

Rob F.M. van den Brink

Abstract—We propose two robust algorithms for the extraction of char-
acteristic termination matrices from multi-port measurements, specified
in generic S-, Z- or Y-parameters. One algorithm is based on iterative
cascade calculations and the other one on eigenvalue calculations.
Although the concept of characteristic impedance is well known for
achieving reflection-free transmission in homogeneous two-port cables,
we have generalized its definition for applying it to arbitrary multi-port
devices. Our approach does not restrict itself to homogeneous or sym-
metric devices, and even reciprocity nor being passive is a requirement.
It starts from generic matrix parameters, does not require any infor-
mation about inductance or capacitance per unit length, and allows for
a true black box approach for analyzing and modeling multi-conductor
transmission lines like twisted pair telephony cabling.

This paper starts with defining a solid framework of multi-port re-
lations for signal flow and input impedance, shows that well-known
two-port relations do not hold anymore in the multi-port case, and
demonstrates at the end the algorithms by applying it to an eight-port
characterization of a 100m example multi wire twisted pair cable. As a
spin-off, this paper has essentially solved the bi-square matrix equation
XAX+BX+XC+D=0 on the fly.

Index Terms—Multi-ports, transmission line matrix methods, transmis-
sion line theory, characteristic impedance, scattering matrices, multi-
conductor twisted pair cables, cable modeling.

1 INTRODUCTION

HE need for multi-port analyses on cables arises in all

kinds of studies on Gigabit deployments via existing
telephony wiring [1], [2], [3]. The present generation DSL
modems like G.fast [3] are transmitting wideband signals
beyond 100MHz, and are using these cables far beyond
the frequency bands they were ever designed for. Under
those conditions, the crosstalk between wire pairs can easily
exceed the direct transmission through a wire pair [4],
[5], [6], [7] and simple two-port approximations will thus
fail. Therefore advanced modeling techniques have been
developed for twisted pair cabling, initially only for two-
port cable modeling [8], [9] and more recently for multi-port
analyses [7], [10], [11], [12] as well.
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Multi-port cable modeling requires knowledge about
elementary cable properties, such as for instance the char-
acteristic impedance matrix. That impedance is well known
from two-port cable analyses to facilitate reflection-free
transmission but the concept can be extended to multi-
ports. However, these debates have in common that they
are restricted to two-ports [13], [14], [15], [16] or rely from
a-priory knowledge on cable structure or primary cable
parameters, like inductance and capacitance matrices per
unit length [17], [18], [19], [20]. And that information is
often lacking for real multi-port cables. What is needed is the
other way round: a black box approach starting from multi-
port (s-parameter) measurements from which relevant cable
properties are to be extracted, without any assumption on
homogeneity and symmetry.

This paper proposes two robust algorithms for finding
the characteristic termination matrices of arbitrary multi-
ports, which are measured and specified in S-, Z- or Y-
parameters. These algorithms rely on a generalized defini-
tion of characteristic termination, fully independent from
the concept of reflection-free transmission, and therefore we
provide some basic definitions first. Chapter 2 treats waves,
voltages and currents equally, discusses how these signals
flow through a multi-port, explains how arbitrary multi-
port terminations will be observed at the input, and defines
the characteristic termination of a multi-port in this manner.
Chapter 3 uses that definition to express the problem as
solving the so-called characteristic equation. It shows that
well-known formulas for two-ports do not apply anymore
for multi-ports and in turn elaborates on two different algo-
rithms for extracting the characteristic termination matrices.
The first one is based on the cascade calculations proposed
in [21] while the second one is based on eigen value
calculations. Chapter 4 demonstrates the usability of our
algorithms, and applies them to an eight-port measurement
on an example multi-wire telephony cable.

2 MULTI-PORT IMPEDANCE TRANSFORMATION
2.1

The signals at the ports of a device can be described as a
pair of waves (W,, W}) or as a combination of voltages and
currents (U,[I). It is a matter of preference which of these two
are preferred, since both can be interchanged. If we follow

Definitions
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all conventions and terminology detailed in [21], then all
(incident) waves W, flow into the multi-port, all (reflected)
waves W}, flow away from the multi-port, all currents [ are
directed into the multi-port and all voltages V are from the
port terminals (positive) to a common terminal (negative). If
the multi-port is linear then these waves are related via the
generic matrix expression Wy, = S x W, and the voltages
and currents via U = Z x T or I = Y x U. The concept
of characteristic termination has only a meaning when the
multi-port is cascadable, so when half of its ports are labeled
as “input” and the other half as “output”. Under those
conditions the use of matrix decomposition, as formalized
in [21], can simplify matters significantly. Therefore our
starting point for describing characteristic terminations of
multi-ports are the sets of decomposed matrix relations as
summarized in table 1. Further details can be found in [21],
where this concept has been formalized.

TABLE 1
Five different sets of definitions of the same cascadable multi-port, in
terms of decomposed matrix parameters.

Wi =8Sii X Wy +Sio x Wy, | 1a
Wio = Soi X Wy + 850 X Wy, | 1b
U, =%2; x1,+72;, x1, 2a
U,=2, x1;+Zy, x1, 3b
IZ‘:Y“‘XUZ‘—"—YZ'OXUO 3a
Io:Yoi XUi—f—YOOXUO 3b
Wm‘:Tf X Wy, + Ty x Wy, | 4a
Wy =Ty x Wy, + T x Wy, 4b
U,=A, xU,— A, xI, 5a
L=A,xU,—-A.x1, 5b

2.2 Multi-ports under arbitrary termination

If a cascadable multi-port is terminated with an arbitrary
but known multi-port reflection network Sj, then we will
observe a reflection matrix S; at the input and a wave
transfer matrix H,, between input with output signals.
Something similar applies for voltages and currents, and
the full set of definitions to relate signals under terminated
conditions is summarized in table 2.

TABLE 2
Three different sets of definitions about input and output signals of the
same multi-port under arbitrary termination.

Wao = SL ' Wbo la
Wy =8;- Wy, 1b
Wiy =Hy, - Wy, | 1c
U,=-Z2;-1, 2a
U, =+7Z; -1, 2b
U,=H, U, 2c

load reflection:
input reflection
wave transfer
load impedance
input impedance
voltage transfer

load admittance I,=-Y U, 3a
input admittance I, =+Y,; U, 3b
current transfer I,=-H,; I, 3¢

Both the input reflection and wave transfer matrix can
be expressed in the termination reflection Sy,. Table 3 sum-
marizes the result of a matrix elaboration on the defini-
tions in table 1 and 2. These equations are expressed by

using the Matlab syntax for matrix inversion, whereA/
B = A xinv(B) and A\B = inv(A) x B. Matrix I refers
to the unity matrix.

These equations hold only in forward direction and
make no assumptions on reciprocity and/or symmetry of
the multi-port. The expressions for the reflection in reverse
direction can simply be obtained by swapping matrix S,;
with S;, and S;; with S,,. A similar approach applies for
the expressions with Z and Y parameters as well.

TABLE 3
Equations for forward signal transfer and input properties at specified
multi-port termination.

via decomposed generic matrix parameters, from Sr, Zr, Y,

waves & H, =(I—S. -S.)\Su: la
reflections | S; = S;; + (Sio - Sp) X Hy, 1b
voltages & | Z; =Z;i — Zio/(Z1 + Zoo) X Zy; 2a
impedances | Hy, = Z1/(Z1, 4+ Zoo) X Zo;i | Z; 2b
currents & | Y, =Y — Yio/ (YL +Yoo) X Yy 3a
admittances | H; = =Y /(Y1 + Yoo) X Y0, /Y 3b

via decomposed chain matrix parameters, from Sy, Zy, Y,

waves& | S;=(Ty+T,-S.)/(Tfs+T,-Sz) 4a
reflections | H,, = inv(T;+ T, -Syz) 4b
voltages & | Z; = (A, -Zr +A,)/(Ay-Zr + A.) 5a
impedances | H, =Z1/(A,-Z; + A,) 5b
currents & | Y; = (Ay+A:.-Y.)/(A,+A.-Yy) | 6a
admittances | H; =Y. /(Ay + A.-Yy) 6b

The wave transfer matrices (H,,) are not the same as
the voltage transfer matrix (H,) nor the current transfer
matrix (H;) but they are related. Table 4 summarizes these
relations, which can be derived from our definitions so
far. The same applies for reflection, impedance and admit-
tance, but their relations are not different from the general
transformation rules between these three, as summarized in
equation (3) of [21].

TABLE 4
Relations between forward signal transfer and input properties at
specified multi-port termination.

Hy, = ([+Sp)\Hy, - (I+8S:) la
H,=010-S,)\H; - (I-5;) 1b
H,=Z; H;/Z,=Y;\H;- Y, | 2a
H,=(+S;) H,/I+S,) 2b
H,=Z2.\H,-Z, =Y, -H,/Y, | 3a
H,=(1-S.) H,/(I-S;) 3b

2.3 Multi-ports under characteristic termination

The previous section is dedicated to arbitrary termination
networks, but a special class of terminations can relate the
input and output in a remarkable way. This occurs when
the reflection matrix S;, of the termination network is such
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that the input reflection matrix S; becomes equal to it. The
impedance of such a termination network is known as im-
age impedance in the domain of (two-port) filter design and
as characteristic impedance in the domain of transmission
lines, but both concepts are the same and can easily be
generalized to arbitrary multi-ports.

In this paper, we will define the characteristic termi-
nation of a multi-port as a passive network (if it exists)
that causes that the input reflection becomes equal to it,
so S; = Sy = S, and therefore also equal impedance
(Z; = Z; = Z.) and admittance (Y; = Y = Y.) at
the input. Mark that this generic definition for characteristic
termination does not require that the multi-port represents
a transmission line, nor to be symmetrical, nor reciprocal,
nor passive. When a multi-port is not symmetrical then its
characteristic termination matrix in forward direction will
be different from its values in reverse direction. So in case
{Sc, Z., Y.} confuses, we will distinct them by direction as
{Scf/ Zcfr ch} and {Scr/ Zer, Yerk.

2.4 Characteristic properties of multi-ports

Finding numerical values for {S., Z., Y.} from multi-port
matrix parameters is not trivial, and are therefore discussed
in another section 3. But as soon as these values are found,
they are associated with a few simple and remarkable prop-
erties.

A first property follows directly from the definition.
When the multi-port is cascaded with itself, the input re-
flection matrix of that cascade will again be equal to the
load reflection under characteristic termination. And this
remains when the cascade grows to infinite length. So in the
special case that the multi-port is a homogeneous multi-wire
transmission line, and a wave is traveling through that line,
that wave will not notice any difference between traveling
through an infinite long homogeneous line or a finite line
that is loaded with the characteristic termination. Waves
in an infinite long homogeneous line will never arrive at
the end, so will never be reflected against such an end,
and the same absence of reflection will therefore occur if
it travels through a finite line that is terminated with its
characteristic load. This supports the relevance of finding
values for characteristic terminations.

A second property is that the overall transfer matrix HH
of a multi-port self-cascade under characteristic termination
is just the matrix product of the individual transfer matrices
H. Table 5 summarizes this property for various charac-
teristic transfer matrices. Table 6 summarizes how {H.,,
H.,, H.} are interrelated, and these relations are simply
a special case of those expressed in 4. In general they are all
different, except for the special case that the multi-port has
only two-ports. Under those conditions, the decomposition
matrices simplify into single scalars and the expressions in
table 6 will simplify intoH.,, = H., = H.; = H,. But this
holds for two-ports only.

A third property is that the generic multi-port param-
eters of a device can be recovered from its characteristic
terminations and associated transfer matrices. Table 7 shows
the result of a derivation on how to recover the s-parameters
from the set {S.¢, Scr, Hew ¢, Hewr ). Similar expressions for
Z and Y have not been elaborated here but their values can

TABLE 5
Definition of Transfer and input properties at specified multi-port output
terminations.

HH,., =H., xHep X -+ x Hey
HH., = H., x Hey X -+ x Hey
HHCi:HCiXHCiX”~XHCi 3

TABLE 6
Relations between signal transfer and input properties at specified
multi-port output terminations.

Hmu = ( + Sc)\H(’u : (H + Sc) la
H., = ( Sc)\H(’z } ( - Sc) 1b
H. =72 Hcl/zc = C\Hci Y. 2a
H.,=01+S.) -H./(I+8S.) 2b
H., = ZC\H Z.=Y,- ch/Yci 3a
H., = (H Sc) . ch/(]I - Sc) 3b

easily be derived via S — Z or S — Y transformations as
detailed in [21].

3 [EVALUATING CHARACTERISTIC TERMINATION

3.1 Characteristic equations

Finding numerical values for the characteristic termination
of a multi-port is essentially solving an equation that makes
the reflection matrix at the input equal to the reflection of its
load. These equations are more or less offered via table 3 and
equations for {S., Z., Y.} can be expressed in both generic
{S, Z, Y} or chain {T, A} parameters. The equations (1) in
table 8 show rephrased versions of the equations (4)-(6) of
table 3 and we will call them all characteristic equations.
The set of equations (2) in table 8 are essentially the same as
those in (1), but only rephrased in matrix format. A simple
solution does not exist but we can solve them via an iterative
cascade calculation or via eigenvalues calculations. Only in
the special case that the multi-port has exactly two ports,
and is symmetrical as well, a simple solution does exist.
The characteristic impedance is then a scalar and equals to
thort . pren

the well-known expression Z, = , where

Zf’“""t = A,/A. = A,/A, represents the input impedance
at shorted output, and where Z*“" = A, /A, = A./A, rep-
resents the input impedance at open output. Unfortunately
this simplicity does not hold for multi-ports.
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TABLE 7
Equations to recover s-parameters from characteristic parameters.
Sii—(Scf_chr'Scf‘chf)/( _Scr'chr'Scf'chf) a
Soi = (chf - Scr . Scf : chf)/(]I - Scr . chr : Scf . chf) b
Sio = (Hmur - Scf : Scr : chr)/( - Scf ‘ chf : Scr ‘ chr) C
Soo = (Scr - chf : Scr : chr)/(]l - Scf : chf : Scr : chr) d
TABLE 8 TABLE 9
Characteristic equations in forward direction. Equations for cascading two multi-ports, S1 and S2, expressed in
decomposed scattering parameters
Scr-To-Se Ses-Tyr—T,-Ses—Tp =0 1
f f ey fo b 2 Sor = S2,,/(1—S1,, xS2;)  x
ZcfAyZcf+chAc_A'UZcf_Az:® 1b SQR:S]-Lo/(]I_S2m XS]_OO) y
chAzch +chA _Ac'ch_Ay:© 1c S”:SIM—i-SQRxS2“><Slm a
[ S ] T; T, T ) Soo =824, +Sor X S1,, X S2;, b
¢ I | x ’ X a - )
f Tb T'r Scf S()l = SQF X S]-O’L C
Sio — SQR X Szio d
A, A, Z.y
[ -1 Z;y } X X =0 2b
A, A, I
A A I characteristics reflection matrices of interest. After each pass
[ Y. -1 } X { AU AZ W X { v =0 2¢ the input reflection S;; is modified into S;; + A, and the
Yy ¢ cf output reflectionS,, into S,, + As. The iteration can stop if

3.2 Solutions via cascade calculations

A first method for extracting the characteristic reflections
from generic multi-port parameters is based on the evalua-
tion of a (near) infinite cascade of equal multi-ports. When
that multi-port is lossy (which is common for cables) then
the insertion loss of an infinite cascade becomes infinite high
and the input reflection matrix S;; o becomes indifferent
from the output termination. So S;; -owill then be equal to
the characteristic reflection S.. Our algorithm 1 is essentially
a repetitive calculation of self-cascades until the cascade
is long enough to make the input reflection sufficiently
indifferent from the output termination.

A robust cascade algorithm using decomposed matrix
parameters has been proposed in [21] for arbitrary multi-
ports. The involved equations for cascading a first multi-
port with a second one is summarized in table 9. It relies
on decomposed matrix parameters using the sets {S1;;,
S1,i, S1,,, S1,,} and {S2;;, S2,i, S2;,, S2,,} as input,
to produce the set {S;;, Soi, Sio, Soo} as output. In our
case it is sufficient to keep both multi-ports equal, and
to concentrate on the input and output reflection matrices
Sii,m and Sy, 0 after M cascades. By reusing the results
of each previous calculation step we can simply achieve an
exponential grow of the number M of cascaded multi-ports.
After N calculation cycles we have cascaded in this way the
initial multi-port M = 2V times. This approach works very
fast in practice, since an initial insertion loss of only 0.1 dB
becomes about 410dB after just N = 12 cycles, so S;; 4096
can easily approximate S;; . = S, in this example within
working precision.

The pseudo code in algorithm 1 shows how this can be
implemented. The repeat-until loop implements the itera-
tion, and the set of equations in Table 9 are elaborated in
each cycle for the case thatS1,, = S2,, = Sxx. During each
iteration step, S;; pr and Sy, ar grow step-wise towards the

M = 2" has become large enough, which occurs when S;;
and S,,do not change anymore within working precision.
The code verifies this by checking if the largest coefficients
in A; and Ajare small compared to working precision.

In the special case that the multi-port is symmetric,
algorithm 1 simplifies into algorithm 2.

Algorithm 1 Evaluation of characteristic reflections of an
arbitrary multi-port

01: function [S.f, S¢r] = CharRefl(S;4,S0i, Sio,Soo)
02: repeat

03: SQF = oz/( —Soo - LZ)

04: SQR - w/( Su oo)

05: Al = SQR S Sm

06: AQ = SQF . S Sw

07: Sii =S+ Ay

08: Soo = Soo + Ay

09: Soi = SQF . Sm'

10: Sio = SQR . Sio

11: Err = maxz(mazx(abs(A1) + abs(Az)))
12:  untl Err < 10714

13:  S¢r =Sy

14: S, =S,

3.3 Solutions via eigenvalue calculations

The previous algorithm in section 3.2 is quite convenient in
many practical situation, but may not converge when the
multi-port is loss-less. So the cascade calculation is suitable
for most practical (and passive) transmission lines, but
not for the generic multi-port case. Moreover, the cascade
method provides only one solution while the characteristic
equations in table 8 have multiple solutions. And all these
solutions can fulfill the requirement that they make the
input reflection equal to the load reflection under char-
acteristic termination. Therefore we developed a second
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Algorithm 2 Evaluation of characteristic reflections of a
symmetrical multi-port.

01: function [S.] = CharRef_Sym(S;;,S,;)
02: % assume Soo = S“‘ and Sio = Soi
03: repeat

04: SQ = Soi/(ﬂ - Sii . S“)

05: A= SQ . S“‘ . Sm‘

06: Sii =Sy +A

07: Soi =8¢ - Soi

08: Err = mazx(mazx(abs(A)))

09: until Err < 1071

10: Sc == S“

algorithm, this one based on eigen values. The associated
algorithm 3 is quite simple but the associated explanation
not.

In order to solve equation (la) of table 8, we have to
substitute the set of decomposed chain parameters {Ty,
T,, T, T,} by another set of matrices. Therefore we will first
decompose the full chain matrix T into V-D/V = T, where
D represents a square diagonal matrix with all eigenvalues
of T on its diagonal, and where V is a square matrix with
all associated eigenvectors in its columns. Such an eigen-
value decomposition is a standard feature of modern matrix
packages, and tools like Matlab offer both matrices with
one instruction: [V,D] = eig(T). The resulting matrices
V and D are not unique since any swap of eigenvalues
and associated eigen vectors can also fulfill the same de-
composition. If, for instance, qq is a row vector with an
arbitrary permutation of all indices between 1 and 2n, then
the expression V(:,qq) - D(qq,qq)/V(:,qq) will also be
equal to T.

We phrased this property by using the Matlab syntax
of matrix manipulation, where V(:,qq) refers to a matrix
with all the columns of V are swapped according to the
indices in qq, and where D(qq, qq) refers to a matrix where
both rows and columns of D are swapped according to
the indices in qq. Mark that any scaling of eigenvectors
(columns in V) will also give valid results, but that behavior
is irrelevant for our algorithm.

Once a valid matrix pair of V and D has been evaluated
via standard eigenvalue calculations, we will decompose
each of them further into four sub matrices, one for each
quadrant. In other words:

\27
Vdu

Vud
Vaa

D, 0
o DJ (1)

The indices in this equation refer to “up” and “dn”, and
matrix O refers to a n x n matrix with all zeros.

By expanding the expression V - D/V with these six
sub-matrices, we can express the sub matrices of T and
subsequently of S in those sub matrices. Table 10 shows
the result of that elaboration. By substituting the T matrices
of table 10 into equation (2a) of table 8, we can simplify the
characteristic equation into those expressed in equation set
2).

By rephrasing the characteristic equation in this form,
it becomes clear that when (S.f — Vgu/Vuu) = O, the
entire expression will be nullified, and that the same applies

v—| | ani D=

when (S¢f — Vaa/Vua) = 0. 50 Scr1 = Vau/Vyuy and
Scr2 = Vaa/Vyq are just two possible solutions of the
characteristic equation. But any permutation of eigenvalues
in D and associated permutation of eigenvectors in V
can also offer valid solutions in the same manner. So our
eigenvalue approach has offered many possible solutions
for the characteristic reflection S.¢ in forward direction.

The general expression of all those solutions of the
characteristic reflection equation is shown in equation (la)
of table 11, where {Dt, Vt} refer to the eigenvalues of the
chain matrix T. And since we can follow almost the same
approach for Z.; and Y. s by performing an eigenvalue
decomposition of the chain matrix A into {Da, Va} we
can all describe them in the same manner as shown in table
11.

Two questions arise at this point. How many possible
solutions do exist and are they all suitable for characteristic
termination of multi-port with 2n ports?

The first question is simple. At a first glance one may
expect the total number of possible permutations of indices.
The number of possibilities to fill a vector q with n different
indices between land 2n equals (2:!)! , but each permutation
of the same indices in q does not change the result of a matrix
division. In other words: if A and B are arbitrary n x n
matrices and q an arbitrary permutation of the index vector
[1:n] then A/B = A(:,q)/B(:,q). Therefore the maximum
number of different solutions that can be obtained with the
equation set (1) in table 11 is much lower. More precisely:
“2n over n”, or (27?) = Efﬁ)); This equals 6 for n = 2, 20 for
n = 3,70 for n = 4, etc. It is unclear if more solutions of the
characteristic equations will exist, but we assume that this
is the maximum. But less is possible in special cases since
duplicate solutions are not excluded.

The second question is less simple. An arbitrary multi-
port, without restrictions like being reciprocal, symmetrical
and/or passive, can indeed have this high number of char-
acteristic terminations. But many of the solutions that we
have found with our eigenvalue approach have the property
that the aggregate power of reflected waves against such a
termination network is higher than the aggregate power of
incident waves. This is no problem from a theoretical point
of view but unappropriated for practical use. But as soon as
the multi-port is passive and lossy, we observed that only
one solution represents a passive termination network as
well. Therefore we aim for finding a permutation q that
offers us the principle solution of the characteristic equation,
which is by definition the solution that equals the one we
introduced in section 3.2.

The first step to achieve that is to sort the eigenvalues
in the diagonal of D with increasing magnitude (and keep
them synchronized with the rows in V) so that D,, contains
the smallest ones and Dy the largest ones. Then cascade
in mind the multi-port M times, resulting in a chain chain
matrix of TM = V. DM /V. The larger the number M ,
the better the cascade approximates infinite length and the
better its S;; ps will approximate the characteristic reflection
Sii,co = S¢. Since Dy contains the largest eigenvalues, D7}’
will soon become neglectable compare to D' when M
increases, and expression (1a) of table 10 for S;; will simplify
into:
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TABLE 10
Substitution of decomposed T and S parameters by decomposed eigenvalue and eigenvector matrices of T.

Tf (Vuu Du/Vdu - Vud : Dd/Vdd) / (Vuu/Vdu - Vud/Vdd) la
Tr == (Vdd . Dd/Vud - Vdu : Du/Vuu) / (Vdd/vud - Vdu/Vuu) 1b
Ta == (Vud . Dd/Vud - Vuu Du/vuu) / (Vdd/Vud - Vdu/vuu) 1c
Ty, = (Vau Du/Vau —Vai-Da/Vaa) / (Vuu/Vau — Vud/Vad) 1d
Sii = (Vaa-Da/Vaa — Vau -Du/Vau)/ (Vui-Da/Vaia — Vuu - Du/Vau) | 2a
Soo - ( uu/Du/Vuu - Vud/Dd/Vud) / (Vdu/Du/Vuu - Vdd/Dd/Vud) 2b
Soi = (Vua/Vid — Vuu/Vau) / (VudDa/Via — Vuu  Du/Vau) 2c
Sio (Vdu/vuu Vdd/Vud) / (Vdu/Du/Vuu - Vdd/Dd/Vud) 2d
Scf Ta-Scf—i—Scf-Tf—Tr-Scf—Tb:
T, T 1
= [ S -I roe
s x| sy ]
Vv Vud D ©) Vv Vud } [ I }
_ S 1 uu u u uu U, 2
[ Ses I'x [Vdu Vdd:|x[@ Dl}/[vdu Vi |~ Scy @
= +(Scs — Vaa/Vud) X Vua - Da/Vyua X inv(Vaa/Vud — Vau/Vuu) X (Ser — Vau/Vuu)

—(Sey
0
TABLE 11

Characteristic termination matrices expressed in the eigen vector
matrices of the chain parameters {T, A}.

Cf = VT( n,q)/Vr(up, ) la
ch = Va(dn.q)/Va(up, q) lc
[VT, DT] = elg (T) :>VT X DT/VT =T 2a
[VA,DA]=eig(A) :>VA><DA/VA=A 2b
up = [1:n] 3a
dn=up+n=[1+n:2n] 3b
q= arbitrary set of n indices between 1 and 2n | 3c

Sii = (Vad-D4/Via—0)/(Vua Da/Vaa — 0)
— Vaa/Vug
®)
So the principle solution of the characteristic equation
(2a) of table 8 is essentially S.;= V(dn,q)/ V(up,q), where
index vector q points to the largest eigenvalues in D. The
(Matlab) pseudo code for implementing this all is shown in

algorithm 3, and is pretty simple to implement.

Algorithm 3 Evaluation of characteristic reflection via eigen
values.

01: function S.y=CharRefl_eig(T)

02: n=size(T,1)/2; half the matrix size
03: up=ln; indices up rows

04: dn=up +n indices dn rows

05: [V ,D]=eig(T); eigenvalues

06: [d, qq]=sort(abs(diag(D))); sorting+indexing

07: q=qq(dn); isolate highest values
08: S.f=V(dn,q)/ V(up,q) characteristic refl.

- Vdu/vuu) X Vuu : Du/Vuu X inU(Vdd/Vud - Vdu/vuu) X

(Sef — Vaa/Vua)

4 EXTRACTIONS FROM MEASUREMENTS

To demonstrate our algorithms in practice, we have mea-
sured a twisted pair cable of about 100m, and characterized
the wires of two pairs (organized in a quad) as eight-port up
to 500 MHz. This cable is a multi wire-pair telephony cable
that is commonly used in the Netherlands, and its wires
are organized in quads and twisted per quad. More details
about the measurements on this cable can be found in [4].

At first we treated four wires in some quad of that
cable as an eight-port, and extracted both the forward and
reverse characteristic impedance matrices from its (single
wire, eight port) s-parameter representation. Figure 1 shows
the magnitude of each element of the extracted Z.; and Z,
as a function of the frequency. Their values are typical in the
order of 50 and 100 ohm.

300 Single-wire - CHAR.Zc, char impedance matrix - KPN cable - KPN cable 01, 100m, in-quad #2
T T T T T
Zc i i i i

Char input impedance (matrix) I
250

Char output impedance (matrix) |

200

150 l '

100

freq:[MHz]
450

i i i i i
150 200 250 300 350

(c) TNO 2016
0
0 50

100 400 500

Fig. 1. Extraction of the two characteristic impedance matrices Z.; and
Z.-from four wires measured as an neigh-port.

Secondly we transformed this eight-port of single wires
into a four-port of wire pairs, to emulate a balanced applica-
tion where each pair of wires is connected with the outside
world via perfect baluns. This is the normal way of how
twisted pair cables are being used in practice. Subsequently
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we extracted the balanced characteristic impedance matrix in
forward and reverse direction, and the result is shown in fig-
ure 2. It may be obvious that we have created another (four-
port) device with that and that the characteristic impedance
matrix will be different as well. This time, many values in
Z s and Z, are typically in the order of 135 ohm or close to
Zero.
Wire-pair - CHAR.Zc, char impedance matrix (diff mode) - KPN cable - KPN cable 01, 100m, in-quad #2

300 T r T T '
Zc.(mat):dd:(abs)

Char input impedance (matrix) (diff-mode) |
250 Char output (matrix) (diff-mod

200 ] pAL | ﬂ

150 i I i
W

100

' it I V
(c) TNO 2016 W\wwﬁq:[w‘z/}\

0 50 100 150 200 250 300 350 400 450 500

50

Fig. 2. Extraction of the two characteristic impedance matrices Z.; and
Z.-from two wire pairs measured as a four-port. These are the same
wires as those used in figure 1.

5 CONCLUSIONS

It is well known how to extract the characteristic termination
of symmetrical two-ports, but this is not trivial for multi-
port. We offered a generalized definition of characteristic
termination for multi-ports, not related to traveling waves
and not restricted to symmetrical nor reciprocal nor passive
multi-ports. The use of waves, voltages or currents are
treated equally in this paper, since it is only a matter of
preference which one is the most suitable for a certain
application.

We demonstrated that the well-known and simple for-
mulas for characteristic impedance of two-ports do not
apply any more for multi-ports. We proposed two different
algorithms for extracting the characteristic termination from
measurements on arbitrary multi-ports. As a spin-off, we
derived on the fly the general solution of bi-square matrix
equations of the type XAX+BX+XC+D=0. Our algorithms
have been applied to many multi-port measurements on
twisted-pair telephony cabling and one of these has been
provided here to demonstrate our algorithms.

The derivation of the equations in this paper is quite
elaborated, but the verification of them is simple. Just use
complex random numbers for the s-parameters and verify
that all transformations and equations are consistent with
each other.

REFERENCES

[1] P. Odling, T. Magesacher, S. Host, P. Borjesson, M. Berg, and
E. Areizaga, “The fourth generation broadband concept,” IEEE
Communications Magazine, vol. 47, no. 1, pp. 6269, 2009.

[2] R.wv.d.Brink, “Enabling 4gbb via the last copper drop of a hybrid
ftth deployment,” Broadband Journal of the SCTE, vol. 33, no. 2, pp.
40-46, April 2011.

[3] Fast access to subscriber terminals (FAST) - Power spectral density
specification, ITU-T Std. G.9700, 2014.

[4] R. v. d. Brink, Boschma, and Popova, “Wideband transfer and
crosstalk measurements on twisted pair cables,” TNO Contribu-
tion 11BM-021 to ITU-T SG15/Q4, Apr 2011.

(5]

(6]
(7]

(8]
(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

R. v. d. Brink, “Far-end crosstalk in twisted pair cabling; mea-
surements and modeling,” TNO Contribution 11RV-022 to ITU-T
SG15/Q4, Nov 2011.

——, “Dual slope behaviour of el-fext,” TNO Contribution 2012-
02-4A-038 to ITU-T SG15/Q4, Feb 2012.

——, “Modeling the dual slope behavior of el-fext in twisted
pair quad cables,” submitted to IEEE (manuscript id: TCOM-TPS-
16-0064), Jan 2016.

——, “Wideband modelling of twisted pair cables as two-ports,”
TNO Contribution 11GS3-028 to ITU-T SG15/Q4, Sept 2011.

D. Acatauassu, S. Host, C. Lu, M. Berg, A. Klautau, and P. Bor-
jesson, “Simple and causal copper cable model suitable for g.fast
frequencies,” IEEE Transactions on Communications, vol. 62, no. 11,
pp- 4040-4051, 2014.

Magesacher, “Mtl - a multi-wire transmission line modelling tool-
box,” Journal of Computer and Electrical Engineering, vol. 5, no. 1,
pp. 52-55, Feb 2013.

Muggenthaler and Tudziers, “El-fext analysis,” DT Contribution
2012-06-4A-041 to ITU-T SG15/Q4, May 2012.

Kozarev, Strobel, Leimer, and Muggenthaler, “Modeling of
twisted-pair quad cables for mimo applications,” Lantiq/DT Con-
tribution bbf2014.467 to Broadband Forum, June 2014, (updated
from bbf2014.377 and bbf2014.117).

T. M. Winker, L. S. Dutta, and H. Grabinski, “An accurate deter-
mination of the characteristic impedance of lossy lines on chips
based on high frequency s-parameter measurements,” in Multi-
Chip Module Conference, 1996. MCMC-96, Proceedings., 1996 IEEE,
Feb 1996, pp. 190-195.

N. K. Das, “A new theory of the characteristic impedance of
general printed transmission lines applicable when power leak-
age exists,” IEEE Transactions on Microwave Theory and Techniques,
vol. 48, no. 7, pp. 1108-1117, July 2000.

J. A. Reynoso-Hernandez, R. Rangel-Rojo, M. Aceves, 1. Zaldivar,
L. E. Sanchez, and M. Herrera, “A method for computing the
characteristic impedance of transmission lines using the wave
cascade matrix formalism,” in ARFTG Conference Digest, Spring
2003. 61st, June 2003, pp. 179-185.

J. Lim, J. Lee, J. Lee, Y. Jeong, S. M. Han, K. S. Choi, and
D. Ahn, “Calculation of characteristic impedance of transmission
lines with substrate integrated artificial dielectric structures,” in
TENCON 2010 - 2010 IEEE Region 10 Conference, Nov 2010, pp.
1632-1635.

K. D. Marx, “Propagation modes, equivalent circuits, and char-
acteristic terminations for multiconductor transmission lines with
inhomogeneous dielectrics,” IEEE Transactions on Microwave Theory
and Techniques, vol. 21, no. 7, pp. 450-457, July 1973.

V. K. Tripathi and H. Lee, “Spectral-domain computation of
characteristic impedances and multiport parameters of multiple
coupled microstrip lines,” IEEE Transactions on Microwave Theory
and Techniques, vol. 37, no. 1, pp. 215221, Jan 1989.

C. Paul, Analysis of Multiconductor Transmission Lines. Wiley-IEEE
Press, 2008.

J. Knockaert, J. Peuteman, J. Catrysse, and R. Belmans, “General
equations for the characteristic impedance matrix and termination
network of multiconductor transmission lines,” 2009, industrial
Technology, 2009. ICIT 2009. IEEE International Conference on.

R. v. d. Brink, “Robust multi-port cascade calculations using
decomposed matrix parameters,” submitted to IEEE (manuscript id:
TMTT-2016-02-0200), Feb 2016.



8 THIS TEXT IS STILL AN EARLY DRAFT (JUNE 2016), AND UNDER CONSIDERATION OF BEING PUBLISHED - ROB.F.M. VAN DEN BRINK

Rob F.M. van den Brink graduated in Electron-
ics from Delft University in 1984, and received
his PhD in 1994. He works as a senior scien-
tist within TNO on broadband access networks.
Since 1996, he has played a very prominent role
in DSL standardization in Europe (ETSI, FSAN),
has written more than 100 technical contribu-
tions to ETSI, and took the lead within ETSI-TM6
in identifying / defining cable models, test loops,
noise models, performance tests, and spectral
management. He is the editor of an ETSI-TM6
reference document on European cables, and led the creation of the
MUSE Test Suite, a comprehensive document for analyzing access
networks as a whole. He also designed solutions for Spectral Man-
agement policies in the Netherlands, and created various DSL tools
for performance simulation (SPOCS, www.spocs.nl/en) and testing that
are currently in the market. He has been Rapporteur/Editor for ETSI
since 1999 (on Spectral Management: TR 101 830), Board Member
of the MUSE consortium (2004-2008, www.ist-muse.org) and is now
(since 2009) Work Package leader various projects of the Celtic 4GBB
Consortium (2009-2017, www.4gbb.eu). This consortium initiated the
development and standardization of G.fast.




	1 Introduction
	2 Multi-port impedance transformation
	2.1 Definitions
	2.2 Multi-ports under arbitrary termination
	2.3 Multi-ports under characteristic termination
	2.4 Characteristic properties of multi-ports

	3 Evaluating characteristic termination
	3.1 Characteristic equations
	3.2 Solutions via cascade calculations
	3.3 Solutions via eigenvalue calculations

	4 Extractions from measurements
	5 Conclusions
	References
	Biographies
	Rob F.M. van den Brink


