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Abstract: 
  
This contribution contains a paper on the cause of the dual slope effect in quad cables. It is 
based on an advanced modeling approach, and is currently under review by IEEE for possible 
publication. It is provided to support our proposal (bbf2016.687) for a simplified EL-FEXT 
model covering this dual slope effect. A slides presentation about this topic can be found in 
our contribution bbf2016.685. 
 
 

1 Background 
One of the reasons why FEXT levels are getting so pronounced is that above a certain 
frequency the EL-FEXT increases with 40 dB/decade instead of the usual 20 dB/decade. This 
effect was raised in our ITU contribution of February 2012 [2] and called the “dual slope 
effect”. Since then the existence of that “dual slope” effect was confirmed by many others 
and observed in various different cables [3,4,5,6,7,8,9,10,11,12,13,14], and many other 
contributions thereafter. 
So far the phenomenon was not well understood and resulted in a number of conjecture 
explanations [15] in both the Broadband Forum as in ITU-T. As a result it was not clear how 
to model that and how the far end crosstalk changes with the loop length. 
 
Recent studies at TNO have learned that the dual slope effect is caused by a combination of 
two independent phenomena’s: a first order and a second order crosstalk effect. Both effects 
can exist without the other, are completely independent from each other, and each of them 
differently with the cable length.  

• The origin of the first order effect is well known [16, 17] and random in nature. Its 
magnitude in the EL-FEXT scales proportionally with the root of the cable length (in 
a statistical sense).  

• The origin of the second order effect is deterministic in nature (assuming that the 
cable geometry is deterministic as well) and scales proportionally with the length.  

The sum of both has a dual slope appearance and the break frequency between both slopes 
depends on the magnitude of each crosstalk effect. 
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This contribution is the covering letter of a scientific paper about this topic, which is 
currently under review by IEEE for possible publication [1]. It is for information only and is 
to support our proposal in bbf2016.687 on a simplified EL-FEXT model covering this dual 
slope effect. The slides of a presentation that TNO has recently presented (July 29th, 2016) at 
the UFBB-Seminar in den Haag (the Netherlands) about this topic gives more guidance on 
the approach in this paper. These have been attached to contribution bbf2016.685.  

2 Summary 
 
This contribution is provided for information but with the goal of improving the collection of 
cable modelling techniques brought together in TR-285. 
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Modeling the dual-slope behavior of in-quad
EL-FEXT in twisted pair quad cables

Rob F.M. van den Brink

F

Abstract—It is well known that the ratio between received crosstalk
and received signal in telephony cabling increases with the frequency
until both levels become about equal. Transmission systems like VDSL
and G.fast are designed to cope with that. But the awareness that
the increase of EL-FEXT (equal level - far end cross talk) becomes
much stronger above a certain frequency (increases with 40 dB instead
of 20 dB per decade) was raised only recently in ITU and BBF stan-
dardization bodies for G.fast. This second order phenomenon became
known under the name "dual slope" effect, was initially not well under-
stood, and resulted in a number of conjectured explanations. This paper
demonstrates that this second order effect in far end crosstalk between
opposite wire pairs in the same quad is deterministic in nature. It is
caused by the interaction of the twist in a quad with wires and its metallic
surroundings (e.g. shield). The twist of these quads reduces this second
order crosstalk effect significantly, but what remains causes a slope of
40 dB/decade. This paper shows via a model that this second order
effect scales linearly with the cable length. It quantifies how sensitive this
effect is to cable design parameters like twist length and capacitance
to shield. In addition, an extension is proposed to a commonly used
simplified system model for describing the far end cross talk as a
function of the frequency and cable length.

Index Terms—Twisted pair cables, far-end crosstalk, EL-FEXT, trans-
mission line theory, cable modeling, digital subscriber line (DSL)

1 INTRODUCTION

D IGITAL subscriber line (DSL) modems, aimed for the
next generation broadband via copper [1], are de-

signed to transmit their signals through multi-pair tele-
phony cables under noisy stress conditions. This noise orig-
inates via crosstalk from other DSL systems using other
wire pairs in the same cable. Most of this crosstalk can be
eliminated by proper vectoring techniques [2], a technique
that has become common within DSL systems, and required
by G.fast [3] and VDSL [4] standards (VDSL=Very high
speed DSL). But these crosstalk levels can even exceed the
levels of the DSL signals beyond some break-frequency at
given cable length [5], [6]. This puts strong demands on
vector engines to handle these high crosstalk levels as well.
G.fast can transmit signals up to 106 MHz (and in future
up to 212 MHz) and recent versions of VDSL up to 35 MHz.

Rob F.M. van den Brink is with TNO, Den Haag, The Netherlands, e-mail:
Rob.vandenBrink@tno.nl.
This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be
accessible.

Using these frequencies required the development of more
advanced models for twisted pair cables up to hundreds of
MHz [7], [8], [9].

Legacy models on crosstalk [10], [11] assume that the
ratio between far-end crosstalk and signals transmitted
via the direct channel (the equal level - far end crosstalk
or just EL-FEXT) increases in frequency with a slope of
20 dB/decade and increases in length with the square-root
of the cable length. But more recent measurements focused
on higher frequencies revealed a dual-slope behavior of the
EL-FEXT [5], [6], [12] showing a second order crosstalk effect
of 40 dB/decade as well. This second order effect has a
significant impact on the usability of higher frequency bands
by DSL systems and their vectoring engines. This is because
the effect doubles the slope of the EL-FEXT above some
break frequency, becomes dominant thereafter and break
frequencies as low as 2 MHz have been observed as well.

This behavior was raised [5], [12] in ITU-T SG15/Q4,
which is the standardization body for VDSL and G.fast,
and was soon confirmed by others [13], [14], [15], [16], [17],
[18], [19]. It was clearly visible between wire pairs in the
same quad within several multi-quad cables, and observed
to be cable-type and quad dependent, but the effect was
not so visible or sometimes invisible in the available cable
measurements between different quads.

Initially the cause was not well-understood, and this
resulted in a number of conjectured explanations for the
dual slope effect, as summarized in [20]:sect5.2. One con-
jecture [20] is the normal, expected behavior of coupled
transmission lines. Another conjecture [20] is that it is the
“upward” ramp of a resonance which takes place beyond
106 MHz. This resonance is the result of parasitic mutual
inductance and mutual capacitance. A third conjecture [20]
is that it is the result of propagation through the various
“phantom” or alternate paths that can couple two loops.

The phenomenological dependence on coupling length
was suggested in [15], [18] on the basis of available mea-
surements. Although [18] also related the dual slope effect
to the twist of the wires and the shield, that paper did not
quantify the effect via modeling. The more recent TR-285
[21], [22] from Broadband Forum is illustrative for the state
of the art on cable models, and refers to the dual slope effect
as just “experimental observations”. It models (in A.2.3.4)
the EL-FEXT with just two straight lines (one for each slope)
and models the length dependency of both the first and
second order effect equally, and proportionally with
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It also describes a full multi-port cable model, and phrases
(in section B.1.5.4) the opposite: that length dependency of
the in-quad crosstalk is “in general” proportionally with the
length L. In spite of the capabilities of that advanced model,
TR-285 [21] does not detail on the cause of both slopes
and on the fact that they both scale differently with the
loop length. As a result, a good understanding on how the
characteristics of this second order effect relates to various
cable characteristic is currently lacking.

The present paper shows via modeling that the cause of
the second order crosstalk effect of in-quad FEXT is different
and independent from the well known first order effect and
will also scale differently with the cable length. The presence
of both effects gives the EL-FEXT its dual slope effect. This
second order effect is caused by deterministic variations
in the geometry of the wiring with respect to their shield,
and is also present in the absence of random perturbations
(causing the first order effect).

As opposed to a brute force modeling approach in [23],
[21], [24], the present paper is restricted to the modeling of
a single quad (4 wires with a common twist) with respect to
a shield. The aim is to gain understanding on the physical
mechanism causing the observed behavior. A full descrip-
tion on how multiple quads in the same cable will interact
is kept out-of scope of this paper. This simplifies complex
matters significantly and allows for exploring the most
striking dependencies of the dual slope effect in various
dimensions. Section 2 starts with a brief summary of mea-
surements to show how this second order effect is visible
in EL-FEXT between opposite wire pairs in the same quad.
The existence of this crosstalk effect between different quads
of a multi-quad cable is a bit inconclusive from available
measurements and that question is considered as out-of-
scope of this paper. Section 3 elaborates on a full eight-port
model of four wires in a quad to study the impact of twisting
four wires in the vicinity of a shield to gain understanding.
Section 4 to 6 provide novel material, by building further
on cascaded models and explores the dependency of the
effect in various dimensions. Section 4 shows how reliable
this approach is, section 5 analyses how sensitive the second
order slope is to various design parameters of a cable and
section 6 analyse how the second order effect scales with the
cable length. The eight-port model is quite reliable but often
too complicated for simple system calculations on modem
performance. Therefore we propose in section 7 an extension
to a commonly used simplified model for EL-FEXT to cover
the first and second slope and their length-dependencies
as well. A preliminary version of this paper is meanwhile
contributed to ITU-T SG15/Q4 as [25] to assist the relevant
standardization groups with further understanding on the
dual slope effect.

2 MEASUREMENT RESULTS

To illustrate the dual slope effect, we selected a character-
ization [6] of a multi-pair telephony cable, 378m in length
and winded on a drum, where the wires are organized in
groups of four (30 twisted quads in total, similar to figure 4)
and where the cable has a common shield. Measurements
were performed directly on the individual wires (using
the shield as common) by means of an 8-port network

analyzer, without balanced transformers and with full 8-
port correction of systematic measurement errors [6], [26].

The measured s-parameters represent all possible direct
transmission, reflection and crosstalk values of four individ-
ual wires with respect to a common ground (an 8-port has 64
of these values). But DSL modems are using these wires in
pairs, and are connected to them via balanced transformers.
Therefore the differential mode transmission and crosstalk
through or between these wires pair were calculated from
these 64 numbers. The results are shown in figure 1 to 3.

2.1 Observations on crosstalk
Figure 1 shows two curves, the upper curve "TRAN" repre-
senting the measured balanced transmission in a wire pair
of a quad, and the lower curve "FEXT" representing the far
end crosstalk to that wire pair from the other pair in the
quad. The FEXT increases with the frequency, and beyond
about 50 MHz the crosstalk levels are even higher than the
direct transmission levels.
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Fig. 1. Transmission and FEXT, measured in both directions of a 378m
multi quad telephony cable.

Figure 2 shows a curve "ELFEXT" which is the ratio
between the levels of received crosstalk and signal at the
other side of the cable and called the "equal level FEXT”.
It is evaluated as the (magnitude of the) ratio between
measured "FEXT and "TRAN” from figure 1. Two additional
asymptotic lines, labeled as "slope 1" (of 20 dB/decade) and
"slope 2" (of 40 dB/decade), are drawn to highlight the dual
slope effect of this EL-FEXT curve.

The asymptotic lines cross each other near 2 MHz, but
that break frequency is cable, quad and length dependent.
So in this example the second slope becomes dominant
above about 2 MHz and affects almost the full VDSL band.
This dependency is clearly visible in measurements on
different cable types as reported in [5]. Values ranging from
1 MHz to 15 MHz have been observed. Above 60 MHz, the
EL-FEXT “resonates” around 0 dB. This is typical behavior
as observed in many cables, is well-predictable by our
model in section 3 (and shown in figure 7), but not simply
related to a single quantifier. It is not really related to noise
and/or randomness and could be referred to as “a complex
composition of various higher order effects”.

Figure 3 shows two curves, each of them representing
the measured phase of the EL-FEXT from a first wire pair
to the second one in the same quad, and from the second
to the first pair. This phase has a random appearance up to
about 100 kHz, where the first order slope dominates. This
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Fig. 2. The dual slope behavior of the magnitude of the EL-FEXT (20
and 40 dB/decade).

is indicative for a random origin of the first order behavior
of the EL-FEXT. Above about 2 MHz, the phase converges
to constant (deterministic) values up to about 60 MHz; the
band where the second order slope dominates. The lack
of randomness where the second order effect dominates is
indicative for a more deterministic origin of it, and makes
it plausible that the second order effect is an independent
(deterministic) effect of EL-FEXT, independent from and
coexisting with the (random) first order effect. Therefore
the randomness gradually disappears when the frequency
increases from about 100 kHz to 2 MHz until deterministic
values dominate the phase. Moreover, the pairs of forward
crosstalk coupling functions in the quad converge to oppo-
site sign, a behavior that is also typical within quads where
the dual-slope effect is clearly visible. Above 60 MHz the
phase gives the impression to become random again. But
this is more due to rapid phase variations by the above
mentioned “higher order effects” and they can alco be
reasonably described by the model in section 3 (as shown
in figure 8).
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Fig. 3. The phases of both forward EL-FEXT transfers in a quad con-
verge to opposite signs between 1 and 60 MHz.

2.2 Description of first and second order effects
The cause of the first order slope (20 dB/decade) is well
known [10], [11]. If the centers of four wires in a quad
are perfectly positioned at the corners of a square, and
balanced signals are using opposite wires as a pair, then
all crosstalk to the other wire pair in the same quad will be
zero due to perfect symmetry. But the smallest deviation
from that perfection will already result in some residual
crosstalk. This causes the well-known first order crosstalk

effect, since real cables will always have small imperfections
in the symmetry of their quads, which are also randomly
distributed along the cable length. Twisting does not really
help against this crosstalk within the same quad; it helps
minimizing the crosstalk between wire pairs from other
quads.

But there is also another crosstalk effect, as will be
discussed in the rest of vthis paper via simulation. If the
geometry in the quad is of perfect shape, but the quad
is in the vicinity of a shield (or conductive surroundings
like other quads) then the electrical symmetry within the
quad is disturbed since each wire may have a slightly
different capacitive coupling to that shield. This can be
minimized by twisting the full quad, and after many twists
each wire has on average the same capacitance to shield.
The tighter the quad is twisted the better this works and
the less disturbance the shield will have on the electrical
symmetry. But there will always be a residue, causing a
small amount of extra crosstalk, and our model can quantify
that this deterministic effect causes the second order slope
(40 dB/decade).

3 SIMULATION APPROACH
The wire pairs in a multi quad cable are organized in groups
of four wires, as shown in figure 4, and surrounded by a
common shield. Each pair (1-2) or (3-4) of opposite wires is
being used in a balanced mode. When the geometry of such
a quad is a perfect square, and when the quad is far away
from the shield and other quads, then the symmetry will
cause that the crosstalk from one balanced pair (1-2) to the
other balance pair (3-4) in the same quad is zero. But this
is not the case in practice, for instance when the quad is in
the vicinity of a shield. Then each wire has an additional
capacitance to that shield (and to other quads) as well, as
shown in the circuit equivalent of figure 4.

1

2

3

4

shield

multi-quad cable quad

2

1 3

4

circuit equivale

Fig. 4. A multi-quad cable is organized in groups of four wires positioned
in a square, and each quad is twisted many times over its full length.
Opposite wires (1-2) and (3-4), are used for (balanced) transmission,
and each wire has a capacitance to all the other wires and to the
common shield. The drawing of the helical structure was copied from
a picture in [21].

This capacitance is not equal for each wire and thus
deteriorates the overall symmetry of the quad. This is one
of the reasons why quads are twisted so that each wire
approaches the shield as often as the other three over each
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twist length. This makes all wire capacities to shield equal
on average, restores the balance on average and reduces the
overall crosstalk significantly.

To model this twisting effect, we consider the cable as
a long cascade of very short cable sections of four wire
structures. If the length of each section is short enough
(compared to the twist length) then they can be assumed
as piece-wise uniform over its length. Each section may
have different uniformity but this will be repetitive if the
wires are regularly twisted. One can obtain the transfer
functions of interest by treating each uniform section with
four wires as an 8-port (using the shield as common), by
cascading them all over the full cable length as 8-ports,
and by extracting from that cascade the overall balanced
transfers of the wire pairs.

3.1 Modeling uniform cable sections
A complete modeling of each uniform cable section can be
obtained via the well-known multi-conductor transmission
line equations [27]:ch3, [8], [24], [23], [21]. When z denotes
the longitudinal position in this cable structure, then the
vectors of voltages U and currents I are at each position z
given by the matrix collection:

∂
∂zU(z) = −Zs · I(z)
∂
∂z I(z) = −Yp ·U(z)

(1)

In these expressions, Zs is the series impedance matrix
per unit length and Yp the shunt admittance matrix. If
we split them into their real and imaginary parts we may
phrase them as Zs = Rs + jωLs and Yp = Gp + jωCp.
Note that all these matrices are in principle non-zero and
frequency dependent. This description can be thought of
as an alternating cascade of infinite thin (inductive) series
networks and (capacitive) shunt networks, as depicted in
figure 5.

Y Y

Z
1

2

3

4

Z

Fig. 5. An alternating cascade of infinite thin networks can represent a
uniform cable.

The series impedance matrix Zs is dominantly inductive
in nature representing the series inductance (per unit length)
of individual wires and their mutual magnetic coupling. By
adding series resistors we can account for the cable loss.
The shunt admittance matrix Yp is dominantly capacitive in
nature representing all capacitive coupling (per unit length)
between the wires and the shield.

Figure 6 shows a circuit diagram with lumped elements
of this concept if a uniform 4-wire structure is surrounded
by a shield and is perfectly loss-free. This concept can easily
be generalized for more wires. If losses are involved then

the circuit diagram can be extended with (low) resistors in
series with the inductors and by adding a small loss-angle to
the capacitors. In principle, none of these lumped elements
are zero nor frequency in-dependent.

1

4 2

1 3

4

L1

L4

C13

C24

C43
C23C14

L2

L3

2

3

C11 C33

C44 C22

Fig. 6. The Z-matrix is inductive in nature and the Y-matrix is capacitive
in nature.

Cable modeling is essentially the finding of parametric
expressions to evaluate the matrices Zs and Yp as function
of the frequency. Once these matrices are modeled, a full
multi-port cable model of a uniform section is simply the
evaluation of multi-port s-parameters from a pair {Zs, Yp}
via common calculation methods [27], [24], [21]. Similarly, a
cascade of uniform sections is modeled via additional cas-
cade calculations with multi-port s-parameters [27]. These
modeled s-parameters are to be the same as those that
have been measured directly on the cable, otherwise the
model is inadequate. From this point the evaluation of cable
properties such as EL-FEXT are the same as those used after
measurements.

The aim of this paper is not to make the best possible
cable model that handles all cable details very well, but to
make the simplest model that is adequate enough to raise
understanding on the cause of the dual slope effect. One
such simplification is assuming that all dielectric losses are
zero, that both Cp and Ls are frequency-independent and
that all cable loss is caused by series resistance. To model
however cable loss sufficiently fair over a wide frequency
interval, each series resistance should be modeled with a
strong frequency dependency to address additional losses
caused by the skin effect in each wire.

Effort on two-port cable modeling up to hundreds of
MHz [7], [8], [9] has learned that this simplification is not
entirely true but that the capacitance is rather constant over
a wide frequency interval, the inductance converges roughly
to a constant value above a few hundreds of kHz, and
that dielectric losses are small compared to resistive losses.
Extracted matrix values for Cp and Ls from multi-port cable
measurements [6] show a similar behavior over a sufficient
wide frequency interval. The error we make by using the
above mentioned simplification is irrelevant for raising the
aimed understanding, since the resulting multi-port cable
model can still offer a sufficiently good match between
model and measurements (as will be shown in figure 7).

3.2 Modeling matrices C, L and R of uniform sections

To model Yp from this example structure we therefore as-
sume Gp = 0 and assume Cp to be frequency-independent.
In other words, we assume only ideal lumped capacitors
between the wires and/or shield, where Crk = Ckr denotes
the lumped capacitance per unit length between wire r and
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k, andCkk between wire k and the common shield. By trans-
forming this lumped circuit description into its Y-parameter
representation, we obtain the desired (symmetric) Yp for a
4-wire structure:

Yp = jω ·Cp = jω ·


∑
C1 −C12 −C13 −C14

−C21
∑
C2 −C23 −C24

−C31 −C32
∑
C3 −C34

−C41 −C42 −C43
∑
C4

 (2)

Where ΣCr = Cr1 + Cr2 + Cr3 + Cr4 = C1r + C2r + C3r + C4r .

To model the imaginary part of Zs from our exam-
ple structure we assume Ls to be frequency-independent
(the measurements reported in [6] show that this is a fair
approximation), and its real part by a simple frequency-
dependency for Rs. In other words we assume for Ls only
ideal lumped inductors that are all magnetically coupled,
and for Rs resistors in series with these inductors. Similarly
to Cp we can model Ls independently by assuming lumped
inductance and coupling values. However this approach can
easily result in cable models predicting properties that are
physically impossible. Therefore it is often more convenient
to evaluate Ls via a detour.

Lets therefore assume another (hypothetical) wiring
structure where all copper is exactly the same as the real
one but where all insulation around that copper is assumed
to be fully absent. In other words: as if all conductors are
suddenly floating in vacuum. Such a hypothetical wiring
structure has different properties and the inductance and
capacitance matrices will change accordingly from {Ls, Cp}
to {Ls0, Cp0}. What we gain from that approach is (a) that
now Ls0 can easily be derived from Cp0, (b) that Ls can
easily be derived from Ls0 and that (c) Cp0 is relatively
simple to estimate from the values of Cp.

Lets clarify that step by step. The first step (a) is possible
since the free-space matrix relation Ls0 ×Cp0 = I/c20 holds
for this hypothetical structure. See [27]:eq3.37, [8]:eq4. In
this expression, matrix I refers to the identity matrix and
constant c0 = 3 · 108 m/s refers to the speed of light
in vacuum. Step (b) is possible since Ls and Ls0 have
equal values since the magnetic properties of the actual
and hypothetical structure are the same (only the dielectric
properties have changed). Step (c) is a bit more complicated.
If all insulation has vanished then all lumped capacitances
reduce in value by a factor roughly equal to the dielectric
constant(s) of the used insulation material. Typically a value
somewhere between about 2.0 and 4.0 for real telephony
cables. Estimating realistic values for these scaling factors is
less critical then directly estimating realistic values for the
mutual inductances in Ls, and this makes the use of above
detour less error-prone and therefore more convenient.

In conclusion, when εrk represents the scaling for
lumped capacitance Crk to Crk0 = Crk/εrk, then we can
create Ls via expression (3). And since εrk = εkr and
Crk = Ckr , only three independent ε values are to be
estimated for a perfect symmetrical quad structure to extract
Ls from Cp.

To complete the modeling of Zs with its real part, we
also assume Rs as the result of 4 lumped resistors, in series
with the four lumped inductors in Ls. This simplifies Rs

into a diagonal matrix since the dielectric is assumed to
act as perfect insulator. These resistors are to be frequency-

Ls =
1

c20
·


∑
CE1 −C12/ε12 −C13/ε13 −C14/ε14

−C21/ε21
∑
CE2 −C23/ε23 −C24/ε24

−C31/ε31 −C32/ε32
∑
CE3 −C34/ε34

−C41/ε41 −C42/ε42 −C43/ε43
∑
CE4


−1

(3)
Where ΣCEr = Cr1/εr1 + Cr2/εr2 + Cr3/εr3 + Cr4/εr4

dependent to account for the skin-effect in the wires, and
when modeled such a curve in a pure mathematical manner
then a simple truncated series expansion in

√
ω can model

this dependency quite well. If each wire r adds an equal
series resistance to each inductor, then this diagonal matrix
Rs becomes:

Rs =

(
Rs0 +

√
ω

ω0
·Rs1 +

ω

ω0
·Rs2 + · · ·

)
·

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4)

Where Rs0, Rs1,... are all constants and ω0 = 2π·1MHz

The nominal values in table 1 are chosen to offer a good
match between the cable measurements in the figures 1,
2 and 3, and what the model predicts. This match will
be demonstrated in figure 7 and 8. These nominal values
are found in an iterative manner, starting from estimated
values for C and ε. These estimations were taken from [6],
where both the cable measurements as well as the extracted
values for C and L were reported for this particular cable.
These first estimates gave already a fair match and could
be manually improved by tuning the values and inspecting
the match between the measurements and what the model
predicts in terms of s-parameters.

Nominal values for {Rs0, Rs1, Rs2, ...} were also found in
an iterative manner. A starting value for Rs0 was obtained
via low-frequency measurements of series resistance and
the other values were initially assumed to be zero. They
were also improved via manual iteration, by comparing
the measured cable loss with the loss predicted via these
numbers. A fair match could be achieved (see figure 7 and
8) with only the first three terms of the series expansion of
Rs as non-zero. The rest of the polynomial expansion was
truncated.

TABLE 1
Nominal parameter values, to simulate a section

C11 ≈ C22 ≈ C33 ≈ C44 Cc 10 pF/m
C31 ≈ C42 ≈ C32 ≈ C41 Cp 22 pF/m
C21 ≈ C43 Cq 9.5 pF/m
ε11 ≈ ε22 ≈ ε33 ≈ ε44 εc 3.3
ε13 ≈ ε42 ≈ ε32 ≈ ε41 εp 2.5
ε21 ≈ ε43 εq 3.1
Rs0 Rs0 0.0863 Ω/m
Rs1 Rs1 0.130 Ω/m
Rs2 Rs2 0.018 Ω/m

With only 9 nominal values per unit length, a full multi-
port parameter description of this symmetric and uniform
line can be evaluated from the matrices Zs and Yp, as
outlined in section 3.1.

In our case, we transformed them all into single wire s-
parameters for the full cable and from that into mixed mode
parameters for the balanced wire pairs.
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3.3 Modeling the twist in the quad

The full cable however is not uniform because the twist
in the wires causes the distance between each wire and
the shield to vary with the z position in that cable. As
a result the capacity from wire to shield varies regularly
from a minimum to a maximum value, and back. We have
approximated this over a full twist length by cascading
n uniform but slightly different sections, where n varied
between 4 and 64. The four capacitance values from the
wires to the shield vary gradually as well with the position
of each section while all other values in table 1 are kept
at their nominal value. The theoretical capacitance between
two flat metallic plates is roughly inversely proportional
with the distance d. This property is used here as well
to estimate how the capacitance between wire and shield
varies with the distance. The twist varies this distance in a
harmonic manner over a full twist length ∆L, and therefore
this variance in segment k has been modeled as:

C11 = Cc/ (1 + ∆c · sin(2π · k/n ·∆L))
C22 = Cc/ (1−∆c · sin(2π · k/n ·∆L))
C33 = Cc/ (1 + ∆c · cos(2π · k/n ·∆L))
C44 = Cc/ (1−∆c · cos(2π · k/n ·∆L))

(5)

Where ∆c is a chosen "shield unbalance" factor, ∆L the
twist length, n the number of steps per twist, k an integer
index of the section, and Cc a nominal value taken from
table 1. The full cable can subsequently be approximated by
repeating this cascade as often as needed for creating the full
cable length (over 16000 sections in our example cable). This
is a brute force approach, but allows us to analyze various
cable properties.

TABLE 2
Parameter values used to simulate the twisting

Sections per twist “n” n 16
Twist length "dL" ∆L 37cm
Shield unbalance "dc" ∆c 0.55

4 SIMULATION ACCURACY

4.1 Match between model and data

The modeling approach of the previous chapter in combi-
nation with the nominal values from table 1 and 2 offers
a close prediction of the measured cable properties of our
example cable. Figure 7 illustrates how close the magni-
tudes of measured and modeled transmission and far end
crosstalk can be with above mentioned values. It shows two
measured and two modeled curves, one representing the
transmission through a wire pair and the other representing
the far end cross talk between two wire pair of the same
quad. Both show a good match up to high frequencies and
even the dip in the transmission around 65 MHz is well
predicted by the model. The match between the curves in
figure 7 become weaker for the highest frequencies, and
is most pronounced by the deviation of the measured and
modeled dip around 90 MHz. This small deviation is not a
surprise since all values of the inductance and capacitance
matrices have been modeled as frequency in-dependent (to
keep the model as simple as possible), while multi-port

measurements on this cable have shown [6] that both vary a
bit with the frequency. Since all geometric imperfections of
the quad were ignored, except for the twist and for a shield,
these dips are apparently caused by the interaction between
twist and shield.
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Fig. 7. Match of transmission and FEXT magnitudes, between model
and measurement.

Figure 8 shows the match between measured and mod-
eled phase of the two EL-FEXT curves of a quad in forward
direction. Our model predicts a phase of 0 and 180 degrees
between the two EL-FEXT curves in forward direction and
this holds for the frequencies above about 2 MHz (from
where the second order effect dominates the crosstalk) until
about 60 MHz (from where the EL-FEXT has approached its
asymptotic value of 0 dB.
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Fig. 8. Match of EL-FEXT phase, between model and measurement.

4.2 Impact of steps per twist
To verify if the number n of homogeneous sections per
twist is large enough, we simulated the same cable length
several times with an increasing number n. Figure 9 shows
the simulated transfer and FEXT crosstalk of a 378m loop
when we evaluate it for n=4, 16 and 64 sections per twist
respectively. This figure illustrates that this number hardly
influences the result and that even a simulation with just 4
section per twist is adequate.

5 SENSITIVITY TO GEOMETRIC VARIATION

Now the model has proven to be reliable, we can use it to
analyze the impact of changing some design parameters of
the cable. This includes the impact of designing a cable with
a tighter/looser twist or smaller/bigger variations of wire
capacity to shield, or the impact of that nominal capacitance.
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Fig. 9. A simulation with only 4 steps per twist offers similar result as a
simulation with 64 steps per twist.

5.1 Sensitivity to twist length ∆L

Figure 10 shows the simulated results on the same loop
when the twist length ∆L varies from 3 to 300 cm. It shows
three curves, each of them representing EL-FEXT (ratio
between FEXT and direct transmission) at another twist
length (distance of a full 360° turn of a quad). All other
parameters are assumed to be at the nominal values of table
1 and 2, so the quad is assumed to be perfectly symmetrical
causing the first order slope (20 dB/decade) to be absent.
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Fig. 10. An increase of twist-length by a factor 10 increases the EL-FEXT
by 20 dB.

A first observation is that the slope of the second or-
der EL-FEXT is accurately 40 dB/dec over a very wide
frequency interval. Another observation is that when the
twist becomes tighter, the magnitude of this second order
effect drops. A decrease of twist length by a factor 10 results
in 20 dB reduction of EL-FEXT. In other words: the EL-
FEXT is proportional to the twist length in this region. In
addition, when the second-order EL-FEXT approaches the
value one, the "meandering" around that asymptotic value
becomes seemingly random in appearance, since it quite in
this region sensitive to small changes in assumptions.

5.2 Sensitivity to shield unbalance ∆C

Figure 11 shows various EL-FEXT curves for the same loop
length when the variation between minimum and maxi-
mum capacitance from wire to shield changes. It shows five
curves where the shield unbalance ∆c (as defined in table
2) varies in steps from 1% to 80%. This shield unbalance
appeared to have a significant impact on the second order
EL-FEXT. Each increase by a factor 10 causes 40 dB increase
in EL-FEXT. But in all cases the slope of the second order

EL-FEXT remains accurately 40 dB/decade over a very wide
frequency interval.
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Fig. 11. An increase of the unbalance in capacity to shield by a factor 10
increase the EL-FEXT by 40 dB.

5.3 Sensitivity to capacitance to shield
The nominal capacitance between wire and shield is not
only determined by the nominal distance but also by the
wire gauge and the dielectric in-between. Figure 12 shows
four curves of EL-FEXT, where the (nominal) capacity Cc

varies from 0.1 pF to 100 pF. And all other parameters re-
main as defined in table 1 and 2. This time, the EL-FEXT
does not change linearly with this capacity. In our example,
it changes about 20 dB from 0.1 to 1 pF, 18 dB from 1 to 10 pF
and about 9 dB from 10 to 100 pF.
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Fig. 12. An increase of the nominal capacitance between wire and shield
increase the EL-FEXT in a non-linear way.

6 LENGTH-DEPENDENCY OF FEXT
The overall EL-FEXT increases with the cable length and is a
combination of both the first and the second order behavior
of the EL-FEXT. Both have a different origin and there is no
reason why both should scale equally with the cable length.

The origin of the first order crosstalk effect is well known
and originates from random perturbations of the geometry
[10], [11]. When the four wire are positioned in a perfect
square, and this symmetry would not have been disturbed
by a shield, then there will be no crosstalk. But in practice
this perfection is easily disturbed by random variation of
the position and size of each wire. This causes crosstalk.
Moreover, it is also well known that the associated EL-FEXT
scales with the root of the cable length (in a statistical sense)
and with a slope of 20 dB/decade [10], [11].
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The second order effect even occurs in the full absence
of these random perturbations, and even when the wires are
positioned in a perfect square. The presence of a shield can
disturb the electrical balance between opposite wires and
the presence of twisting can reduce this effect significantly
but not completely. This all makes the second order effect
more deterministic in nature, and makes it plausible that it
increases proportionally with the cable length.

In practice, however, there will always be a combination
of both the first and the second order effect, and both will
scale differently with the cable length. To prove the state-
ments of the previous section, we will make our model more
realistic and cover both the first and the second order effect
in the same simulation. We have added random variation
of capacitances around their nominal values, and apply
these random changes to each small (uniform) section of
the cascade calculation. This required a brute force cascade
calculation of a huge number of uniform sections, where the
capacitors Cp and Cq are randomly "jittered" for about 1%
around their deterministic values table 1. This causes a first
order behavior of the EL-FEXT, in superposition with the
second order behavior.
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Fig. 13. Simulated EL-FEXT magnitude as function of the loop length.

Figure 13 shows three EL-FEXT curves from these brute
force simulations, where the loop length varies in steps
from 10 m via 100 m to 1000 m. The low frequency part
of these curves (below about 1 MHz) show that the first
order EL-FEXT increases a bit random with the loop length.
Roughly 10 dB when the length increase by a factor 10. This
demonstrates that the first order EL-FEXT increase roughly
proportionally with the square root of the cable length, but
this increase holds only in a statistical sense (averaged over
many of these experiments). The mid band frequencies of
these curves (between about 1 and 100 MHz) show that
the second order EL-FEXT increases consistently by 20 dB
when the length increases by a factor 10. This demonstrates
the expected linear increase of the EL-FEXT with the loop
length. At higher frequencies, all EL-FEXT curves meander
almost randomly around the value of 0 dB.

Figure 14 shows two groups of curves, representing the
phase of the two forward EL-FEXT curves in the same quad.
In all cases they have roughly opposite values around 0 and
180 degrees over the frequency band where the second order
effect dominates.
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Fig. 14. Simulated EL-FEXT phase as function of the loop length; they
have opposite values in the same direction.

7 SIMPLIFIED EL-FEXT MODEL

For system performance calculations on DSL systems, the
brute force approach of our model is a bit overkill. Therefore
a simplified approximate model of EL-FEXT as function of
the frequency and of the cable may be preferred in these
cases. This means the use of a simple transfer function
HELFEXT (jω, L), to approximate the magnitude of the EL-
FEXT as function of frequency and cable length L.

The legacy model [10], [11] using that approach is a
first order transfer function and is too simple for higher
frequencies. The model in [21]:sect A.2.3.1 with just two
straight lines is also too simple since it ignores that those
two lines scale differently with the cable length. It also
ignores that the EL-FEXT cannot keep growing to infinite
high values for increasing frequencies. Therefore we refined
the approach being suggested before in [5] which is based
on a transfer function description of second order high-pass
filters in general.

The second order transfer function in equation 6 can
model the magnitude of EL-FEXT curves much better, since
it (a) supports both the first and second order slope, has
(b) an asymptotic limitation for higher frequencies at 0 dB,
scales (c) the first order slope with the root of the cable
length and scales (d) the second order slope linearly with
the cable length. The transfer function is defined in such a
manner that the overshoot near 0 dB is insignificant.

HELFEXT (jω, L) =

=

∥∥∥∥∥ k1(L)·
(

jω
ω0

)
+k2(L)·

(
jω
ω0

)
2

1+
(
k1(L)+

√
k2(L)

)
·
(

jω
ω0

)
+k2(L)·

(
jω
ω0

)
2

∥∥∥∥∥ (6)

where k1(L) = KXF1 ·
√
L/L0, and k2(L) = KXF2 · (L/L0)

In this expression, ω0 and L0 are arbitrary scaling
constants (e.g. 1 MHz and 1 km), and KXF1 and KXF2

are empirical values for matching the EL-FEXT character-
istics between particular wire pairs of interest. To model
our example cable, values like KXF1 = −68.2 dB and
KXF2 = −76.6 dB, both normalized to 1 MHz and 1 km
cable, are adequate. When KXF2 = 0 this enhanced model
approximates the legacy model for EL-FEXT, since KXF1 is
usually <<1.

Figure 15 and 16 illustrate how the formula of the sim-
plified EL-FEXT model behaves for different loop lengths.
The red lines, specified by k1 · (ω/ω0) and k2 · (ω/ω0)

2, are
the asymptotes of these blue curves. The asymptote raising
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with 20 dB/decade scales proportionally with the root of the
loop length L, since k1(L) = KXF1 ·

√
L/L0. The asymptote

raising with 40 dB/decade respectively, scales proportional
with the loop length L, since and k2(L) = KXF2 · (L/L0).
They cross each other near 3.3 MHz for the 1000 m loop and
near 10 MHz for the 100 m loop. The blue line is limited
near 0 dB so the blue curve has the desired behavior over
the full frequency band. When adequate values for KXF1

and KXF2are found to match a particular cable of interest,
the simplified model offers a fair description of the EL-FEXT
over a wide range of frequencies and loop lengths.
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Fig. 15. Result from simplified EL-FEXT model for a 1000 m loop and
for KXF1 = −45 dB and KXF2 = −55 dB. The blue curve is the
model, the red lines are its asymptotes k1 ·(ω/ω0) and are crossing each
other near 3.3 MHz. The markers at 1 MHz through these asymptotes
are representing the values KXF2 and KXF2.
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Fig. 16. Result from simplified EL-FEXT model for a 100 m loop and for
KXF1 = −45 dB and KXF2 = −55 dB. The blue curve is the model,
the red lines are its asymptotes k1 · (ω/ω0) and k2 · (ω/ω0)2, and are
crossing each other near 10 MHz.

8 CONCLUSIONS

It is well-known that the ratio between received crosstalk
and received signal level in telephony cabling increases with
the frequency, but the awareness that the increase of the
in-quad EL-FEXT becomes much stronger above a certain
frequency (40 dB instead of 20 dB per decade) was raised
only recently [5], [12]. This increase puts strong demands on
vectoring engines of DSL modems to let VDSL and G.fast
make efficient use of higher frequencies. We elaborated on a
full-8-port model of four wires in a quad, to quantify various
characteristics of this dual slope behavior of in-quad EL-
FEXT in these cables.

This model demonstrates that the first order and second
order effects in in-quad EL-FEXT scale differently with the
cable length. The well-known first order effect has random

perturbation of the geometry as origin, scales proportionally
with the root of the cable length (in a statistical sense) and
offers the EL-FEXT its slope of 20 dB/decade.

The second order effect is deterministic in nature. It
occurs when the metallic surroundings of two wire pairs
in a quad (e.g. a shield) disturb the balance of a perfect
quad structure. Twisting the quad can reduce this effect
significantly but a residue will always remain. This residue
contributes a slope of 40 dB/decade to the in-quad EL-
FEXT, and can dominate the first order effect above a
certain frequency. It proceeds until the in-quad EL-FEXT
approaches 0 dB. The magnitude will then meander with
rapid variations around 0 dB.

Our model also quantifies how this second order effect
scales with various design parameters of the cable. It shows
that (a) an increase of twist length by a factor 10 will increase
this effect by 20 dB, (b) an increase of shield unbalance by
a factor 10 will increase it by 40 dB, and (c) an increase
of the average capacitance to shield will also increase it
significantly but that effect is not linear.

The improved understanding of this second order
crosstalk effect brought us to propose a simplified but ade-
quate model of in-quad EL-FEXT [10], [11] for supporting
system calculations on the performance of DSL systems.
This takes more aspects into account then the simple model
with two-lines described in [21].
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